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Introduction
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Today’s class

● Lecture followed by hands-on lab
● Stop me at any time with questions
● Bathroom / emergency procedures
● Slides are on my GitHub (CC BY-SA 4.0)

– https://github.com/azonenberg/electronics-training/tree/master/oscilloscope-probing

https://github.com/azonenberg/electronics-training/tree/master/oscilloscope-probing
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Learning goals

● Pros and cons of various probe designs
● How to select the best probe for a measurement
● How to get the most out of each probe
● Understand non-idealities of real world probes
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Lecture outline

● Introduction
● What is a probe?

● Types of probes
– R-C divider probes
– Resistive probes
– Active voltage probes
– Active differential probes
– Power rail probes
– Nearfield loop probes
– Current probes
– High voltage probes
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About Me

● Ph.D Computer Science (RPI 2015)
● Embedded systems security by day
● High speed digital and test equipment by night
● Author and lead developer of glscopeclient



7

Why Use One Probe Over Another?

Matrix IP1120
200 MHz

$10 on Amazon

Teledyne LeCroy D1330
13 GHz

Over $10000
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What is a Probe?

● Both electrical and mechanical components
● Takes signal from board and puts into instrument
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The ideal probe

● No influence on DUT behavior
● No noise
● No loss
● Low cost
● Unlimited frequency / voltage range
● Doesn’t exist!

– All real probes are compromises
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Attributes of a probe

● Bandwidth
● Attenuation
● Noise
● Flatness
● Loading
● Voltage range
● Linearity

● Cost
● Durability
● Ergonomics
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Example Hardware

● I’m primarily a Teledyne LeCroy shop
– Most probes we’ll discuss or use are made by LeCroy (or Pico)

● This does not imply they’re the best probes ever
– I’m just picking examples from what I have handy
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Crash course in S-parameters

● We have a circuit with N ports
– Typical probes are 2-port networks

● RF energy is applied to one port
● Some signal comes out each port

– Outputs / reflections have amplitude and phase shift
● Model this as a NxN “scattering matrix”



13

Crash course in S-parameters

● Notation: Sxy is path to X from Y

Port 1 Port 2

S21

S12

S11 S22

DUT
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Crash course in S-parameters

● Each S-matrix element is a complex number
– Real and imaginary
– Or (often easier to think about) magnitude and phase angle

● Value is frequency dependent
● Nonlinear effects can create harmonics

– S-parameters only model linear behavior
– Keysight developed X-Parameters for modeling nonlinearities.

This is beyond the scope of today’s discussion.
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Crash course in S-parameters

● Typically measured with a VNA
– Can also simulate, etc

● Port numbering is arbitrary
– For examples in today’s class, 1 = DUT end, 2 = scope end
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Direct Coaxial Connection
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When Is A Probe Not A Probe?

● When it’s just a cable!
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External 50Ω Termination

● Lower end scopes lack native 50Ω terminations
● Can use in-line or T terminations at lower freqs 
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In-Line Terminator vs Native 50Ω Input

Reflection off stub between
terminator and scope frontend

Note rise time difference:
This scope is 4 GHz BW in 50Ω mode, 500 MHz in 1MΩ mode

Matched input
No reflection
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Direct Coaxial Connection: Advantages

● Lowest possible noise
– No external amplifiers
– No attenuation so need less frontend gain

● Low cost – no expensive probe needed
● Flattest possible response

– Only source of error is cable loss
– Can de-embed this if cable is characterized
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Direct Coaxial Connection: Disadvantages

● Requires 50Ω scope input
– Inline termination works OK at lower freqs
– Reflection issues at higher speeds

● High loading on DUT
– Probe presents a 50Ω load

● Limited range
– Most 50Ω scope inputs are ±5V max range
– Many higher BW inputs are even less (±2V is common)
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Direct Coaxial Connection: When to Use

● If your DUT already has coaxial test points
● Measuring end of unterminated 50Ω line

– Empty DIMM or PCIe socket
– Card edge connector
– Unpopulated footprint

● Ideal reference signal to compare probe against
– It’s hard to get flatter response than a short cable
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R-C Divider Probe
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R-C Divider Probe

● You’ve all used this one
● Dates to the vacuum tube era!
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R-C Divider Probe

Lossy cable (often thin Ni-Cr core)
to damp out reflections

Ground wire has
nontrivial inductance
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R-C Divider Probe: Compensation

● Trimpots / caps near BNC
– Simple design is a single C
– Higher end probes may have multiple trimmers for fine tuning

● Adjust for desired frequency response
– Usually target is broadband flatness
– For narrowband measurements, optimize for that region

● Generally not portable across scope models
– If moving probe to another instrument, re-compensate
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R-C Divider Probe: Compensation

Compensated for
another scope

Compensated for
this scope

0.3 dB
less dip

1.5 dB less
peaking

But 30 MHz
less B/W
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R-C Divider Probe: Loading

● 10MΩ input impedance is great!
– ...right?

● We might have forgot something :(



29

Probe Loading

● Placing probe on a circuit changes its behavior
● This can manifest as a “heisenbug”

– DUT stops working when you probe it, or (worse)...
– DUT only works when you probe it!
– New, unrelated failure introduced by probing
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S11 Measurement Setup
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R-C Divider Probe: S11 (across open)
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Time Domain Loading Measurement Setup

Fast edge

50Ω thru line

To scope C2



33

Baseline Measurement

Probe is
off the DUT

Fast edge
seen by DUT

Copy of DUT signal
without probe
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Now let’s add the probe...

● What happens to the 
signal on the DUT?
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With Probe On DUT

Probe sees this

Probe loading

Non-monotonic edge
Potential glitch!
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Pure-Tone Loading Example (High-Z Line)
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R-C Divider Probe: Ground Inductance

● Input is very capacitive
– Any extra L will cause ringing

● Forget that alligator clip ground for anything fast
– How fast is “fast”? Let’s find out…

● Generally, tradeoff of convenience vs performance
– Alligator wire: super convenient, huge L
– Z-ground: trickier to use, moderate L
– Spring: hard to use, small L
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Challenges of measuring probe S21

● Measuring S11 of a probe is straightforward
– Same way you’d use a VNA to measure anything else

● We don’t care much about S22 or S12

– Scope doesn’t drive its end of the probe
● But S21 path is tricky!

– Active probes – proprietary power/signal interface
– R-C divider probes: 10MΩ Z0, not 50Ω
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Scope based “mixed signal VNA”

● Use scope as direct sampling RX for S21 path!
– Port 1: Tone applied to probe tip
– Port 2: Digitized scope waveform

● Split tone to provide phase-locked reference
– Scope CH2 = RF reference port
– Scope CH1 = DUT port 2

● Digital downconversion of both ports
– Then calculate ratiometric I/Q phase/amplitude
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RX Filter Pipeline (example for 200 MHz Fin)
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Raw / Processed Data
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S21 Measurement Setup

Equal length cables to scope and DUT
Can calibrate out remaining skew/loss
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R-C Divider Probe: S21 w/ Spring Ground

Teledyne LeCroy PP022
SDA 816Zi

Spring ground

-3 dB at 400 MHz
On a 500 MHz probe

Difficult to hit rated BW!
Usually need coaxial socket
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R-C Divider Probe: S21 w/ Alligator Ground

5 dB peaking at 150 MHz!
+78% amplitude error

-3 dB at
76 MHz

-25 dB at 315 MHz
… on a “500 MHz” probe
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R-C Divider: Spring vs Alligator Ground
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Step Response w/ Spring Ground

L-C ringing
from ground

Reflection at 13 ns
(propagation delay of cable)
Lossy cable helps with this
but can’t entirely eliminate
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Step Response w/ Alligator Ground

~160 MHz ringing
L-C resonance

Ground lead L +
probe input C
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Cheap Vs Expensive Probe, Alligator Ground

Matrix IP1120 
$10, “200 MHz”

Teledyne LeCroy PP022
$345, “500 MHz”

34x difference in price
 Same bandwidth

$$ can’t fix bad ground
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Cheap Vs Expensive Probe, (DIY) Spring Ground

Matrix IP1120 
$10, “200 MHz”

Teledyne LeCroy PP022
$345, “500 MHz”

Only ~30 MHz
difference in -3 dB BW
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So what did that $335 buy you?

● Better ergonomics
● Better accessories
● More compensation adjustments
● Gain autodetection resistor
● No need to DIY a spring ground
● Worth it? Depends on your needs and budget
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R-C Divider Probe: Strengths

● Very low resistive loading at DC
● Low cost 

– Low 3 digits USD for a nice one
– Cheap ones down to single digits

● Hard to damage with overload/ESD
● Generic design, no vendor lock-in
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R-C Divider Probe: Weaknesses

● High input capacitance
– Heavy loading on DUT
– Extremely sensitive to L in ground path
– Running in 1x mode makes this waaaay worse (~95 pF)!

● Requires compensation adjustment
● High attenuation (typically 10:1)

– Not great for really weak signals
– Worse SNR due to higher frontend gain
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R-C Divider Probe: When to use

● Highish voltage, low frequency analog
– (As used in vacuum tube systems!)
– Most active probes don’t go past 5-10V
– Resistive probes have similar limits

● Beginners you don’t trust with $$$ gear
● If you have nothing better



54

Resistive Probes
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Resistive Probe

● The other passive probe design
– Aka Transmission line probe, Low-Z probe, Z0 probe

● Conceptually super simple
– Resistor and a piece of coax

● Doesn’t get as much love as it deserves
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Resistive Probe

Optional terminator
Doubles probe attenuation
but damps out reflections

if scope input is mismatched

Linear tradeoff between insertion
loss and loading on DUT.

450Ω for 10x, 950Ω for 20x
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Resistive Probe

● Much higher DC loading than an R-C divider
● But response can be much flatter!

– Ideal resistive probe has C=0 and constant S21 / S11

– Of course, parasitics ruin our fun like always...
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Typical Resistive Probes

PicoConnect 921
20:1, AC coupled

Source terminated
$1055, 6 GHz

Teledyne LeCroy
PP066

1:1 / 10:1 / 20:1
$1860, 7.5 GHz

Pico TA061
10:1

$419, 1.5 GHz
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Resistive Probe: S11 vs R-C Divider
R-C divider probe wins

Lower loading

Crossover
~100 MHz

Resistive probe winsTeledyne LeCroy
PP023

R-C divider

PicoConnect 921
Resistive

-14 dB S11 @ 420 MHz
Signal on DUT is loaded down
to 20% of original amplitude!
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Resistive Probe: S11 Crossover

Crossover is at around 100 MHz!
“500Ω” probe has lower loading
than “10MΩ” probe after here!
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Resistive Probe: S21 Flatness Across Models

Pico TA061
10:1, $419

PicoConnect 921
20:1, $1055

+2.7 dB peaking
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Resistive Probe: S21 Flatness Across Models

● Lower cost probe has much worse flatness
● But why?
● Let’s look at some of the effects in play
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Chip Resistor Cross Section

Solder terminals

Al2O3 brick

NiCr film
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But from a different perspective...

Parallel plates of conductor

Dielectric

Leakage path
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Yep, it’s a capacitor!

● Here’s a better model of a real resistor
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Real Resistor Behavior
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Flip-Chip Resistors
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Resistive Probe: Ground L Sensitivity

● Much less input C than an R-C divider
– Low end ones (Pico TA061) can be as high as 2 pF
– Better ones (PicoConnect) are hundreds of fF

● Less C means less ringing for same L
– You can often get away with worse grounding vs R-C divider
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Resistive Probe: Ground L Sensitivity

Pico TA061
Alligator ground

Pico TA061
Spring ground
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Resistive Probe: Ground L Sensitivity vs R-C

Pico TA061
Alligator ground

Teledyne LeCroy PP023
Alligator ground
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Resistive Probe: Ground L Sensitivity vs R-C

Pico TA061
Spring ground

Teledyne LeCroy PP023
Spring ground
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Resistive Probe: Ground L Sensitivity vs R-C

Pico TA061
Alligator ground

Teledyne LeCroy PP023
Spring ground
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Resistive Probe: Input Stub

● Distance from probe tip to resistor is critical
– This is an unterminated low-Z stub!
– Reflection off resistor causes ¼ wave null in response

● Longer tip needle makes this effect worse
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Resistive Probe: Input S11 vs Needle Length

Pico TA061
~17 mm tip

PicoConnect 921
~6 mm tip
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Resistive Probe – Time Domain Loading (TA061)
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Resistive Probe – Time Domain Loading (921)
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Resistive Probe – Input Stub

● Ideally we want no reflection at all!
– But how can we get that?
– Need to eliminate the mismatched stub somehow...
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Resistive Probe – Reducing Reflections

● What if we match tip Z0 to probe resistance?
– For example, 500Ω Z0 for a 500Ω 10:1 probe

● This eliminates mismatch at tip-to-R junction
– All power we don’t sample is instantly reflected back to DUT
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Resistive Probe – Reducing Reflections

● There’s just one problem…
– The impedance of free space is ~377Ω
– Matched tip is impossible with a 10:1 or 20:1 probe
– Doable (maybe) with a 5:1, but mechanically tricky
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Resistive Probe – Reducing Reflections

● Alternative: Make the stub really short
– Move the null past the band of interest

● Lots of fun ways to do this
– Castellated probe tips
– Solder-in damping resistors
– Carbon fiber tip needles

● Any of these sound familiar?
– We’ll return to this in a later section...
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Resistive Probe: Strengths

● Excellent price / performance ratio
– Nothing else gives you GHz of BW for $1K!
– Prices typically mid 3 to low 4 digits USD

● No active components – fairly ESD resistant
● Generic design – no vendor lock-in
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Resistive Probe: Weaknesses

● Relatively high DC loading
– Not suitable for use on lines with pullups

● May disturb DC bias on DUT
– Can mitigate this w/ coaxial DC block
– Some probes include AC coupling cap

● High attenuation (typically 10:1 or 20:1)
– Can reduce attenuation at the cost of worse DC loading
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Resistive Probe: When to Use

● Fast digital signals with push-pull drivers
– Excellent general purpose embedded debug probe
– Easily usable out to several Gbps

● Low impedance analog
– Great for 50Ω RF
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High Impedance Active Probes
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High-Z Active Probe

● FET amplifier in probe head
● Typically fixed HW gain

– Some (not all) provide offset capability
● High DC input resistance (MΩ range)
● Relatively low input C (usually sub-pF)
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High-Z Active Probe

● Most are made by scope vendors
– Proprietary interface, not portable across makes

● Some third party ones exist
– Tetris by PMK (1 to 4 GHz models)
– External power supply, 50Ω BNC to scope
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Teledyne LeCroy ZS1500

● Probe head based on PMK Tetris 1500
– 1.5 GHz, 1MΩ || 900 fF

● ProBus control pod
– Adds ± 12V offset capability
– (PMK version has no offset DAC)
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ZS1500 – S11 w/ Leaf Ground
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ZS1500 – S21 w/ Leaf Ground
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ZS1500 – Step Response w/ Leaf Ground
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ZS1500: Step Response w/ 7cm Wire Ground

Worse performance due to higher L
But not actually too horrible
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ZS1500 – S11 Across Open

Teledyne LeCroy ZS1500
Active FETTeledyne

LeCroy PP023
R-C Divider

PicoConnect 921
Resistive

Crossover w/ 921 at
632 MHz



93

ZS1500: Time Domain Loading w/ Leaf Ground
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High-Z Active Probe: Strengths

● Lowest DC loading of any common probe
– Maintains high input Z much longer than R-C divider

● Relatively low capacitance
● Somewhat tolerant of poor grounding

– Resistive probes are usually better at this, though
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High-Z Active Probe: Weaknesses

● ESD sensitive
● Expensive (low-mid 4 digits USD)
● High attenuation (typically 10:1)
● Small but non-negligible input capacitance
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High-Z Active Probe: When to use

● Loading-sensitive low to mid speed signals
– The ZS1500 is my probe of choice for crystal oscillators

● Excellent general purpose embedded debug probe
– But you can buy 4+ resistive probes for cost of one FET probe!
– Don’t go out and buy a case of them unless you really need to
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Active Differential Probes
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Differential Probe

● Differential amplifier fed by probe tip
● Typically used for low swing, high BW signals

– HV diff probes exist, will be covered separately
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Differential Probe: Input Considerations

● Loading
● Common mode range
● Differential dynamic range
● Damage levels
● Overload recovery
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Differential Probe: Grounding

● Input signal isn’t measured WRT ground, but...
● Very limited common mode range

– ± 5V for Teledyne LeCroy DH series
– ± 2.4V for Teledyne LeCroy D400A-AT

● Board needs to share same DC ground as probe
– No need for a low-L RF ground path!
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Differential Probe: Grounding Methods

● Ground from another probe
● Grounded power supply
● Ground input on amplifier

– Only need to use one per DUT
● USB / UART / JTAG cable
● Coax shield
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Differential Probe: Simplified Schematic
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Loading (Teledyne LeCroy D420-A, SI tip)

Shift is almost invisible!
Good diff probes have
extremely low loading
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Differential Probe: Tips/Accessories (D1330)

Handheld browser

Solder-in

Pin header

Mounting jigs, tape,
tip clips, etc.

Yes, they’re Legos!
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Solder-In Tip (D1330-SI)

950Ω 100Ω

Tip is just two
resistive probes!
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Differential Probe: Securing Tips

● Solder-in probe tips are fragile!
– Cannot handle significant shear forces

● Secure them with tape or dedicated probe clips
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Differential Probe: Securing Probe Body

● Amplifier is large and heavy compared to tip
● If it moves, it will damage the tip
● Use provided holders
● Taping wires down helps too



108

Overload Recovery (LeCroy D1605)

Overshoot and slow recovery
in response to sharp edge
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Eye Pattern Comparison: 2.5 Gbps PRBS-9

Direct coaxial input
Best performance

High loading

LeCroy D420-A
(Active differential)
Strong overshoot

Low noise

Antikernel Labs
AKL-PT5

(Resistive)
Slight overshoot

Worse noise
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Differential Probe: Strengths

● Relatively low DC loading
– Often not as low as high-Z active probe

● Very low capacitance
● Very tolerant of poor grounding

– Ground is only used to keep common mode in range
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Differential Probe: Strengths

● Rejection of common mode noise
● Saves scope channels when probing a diff pair

– Psuedo-differential input uses 2 channels + math function
● Low net attenuation (typ range /1 to /5)

– Probe head has significant attenuation = low loading
– Amplifier means scope sees strong signal anyway
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Differential Probe: Weaknesses

● Very ESD sensitive
● Extremely expensive (4-5 digits USD)
● Limited range
● Overload recovery issues
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Differential Probe: When to use

● High speed low-swing differential signals
● High speed low-swing single-ended signals (DDRx)

– Need to make it differential somehow
– Most common is to measure WRT ground
– Can also measure WRT SSTL Vref etc
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Active Power Rail Probes
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Challenges of Power Rail Measurement

● Looking for weak ripple on large offset
● DC coupled measurements are hard

– Most active probes can’t work with 5 / 12 / 24V rails
– Even at lower voltages, often limited offset at low V/div

● AC coupled measurements lose LF content
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Challenges of Power Rail Measurement

● We want low attenuation to see weak signal
● But also need low loading

– Heavy DC load will alter DUT PSU behavior
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Power Rail Probe: Architecture

● Split the signal into two paths
● High(ish) impedance DC path

– Around 50KΩ is common
– Active amplifier with large offset range (± 24-60V)

● Capacitively coupled 50Ω AC path
– Minimal attenuation, close to 1:1
– Entirely passive, no additive noise
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Power Rail Probe: Simplified Schematic
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Power Measurement Scenario

● Zynq-7000 series SoC (Digilent Zybo)
● Looking at 1.0V core power rail
● Time domain and spectral analysis in glscopeclient
● Compare two 4 GHz probes on same 4 GHz scope
● Teledyne LeCroy WaveRunner 8404M-MS

– D400-AT: 4 GHz /2.5 differential
– RP4030: 4 GHz /1.2 power rail
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Power Measurement Scenario

D400A-AT RP4030
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Results using D400A-AT

Activity spike
Voltage dips

SMPS ripple + harmonic

On-die activity

Ethernet frame
arrives
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Results using RP4030
Overshoot as control

loop recovers from transient

SMPS ripple

On-die clocks
108, 125 MHz

Much lower
noise floor

Additional switching
activity visible
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Better view of spectrogram
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Power Rail Probe: Strengths

● Extremely low noise
● Very low attenuation (close to 1:1)

– Can detect extremely weak signals
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Power Rail Probe: Weaknesses

● Expensive (RP4030 $3016, TPR4000 $7380)
● Limited dynamic range (± 1V or less)
● Not much good for anything but power rails
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Power Rail Probe: When to use

● Power integrity measurements
● Millivolt signals on large DC bias
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Nearfield Loop Probes
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Nearfield Loop Probe

● Variants available for both H- and E-fields
● Short range RF pickup
● Typically used for EMC testing

– Precompliance
– Tracking down source of a failure
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Nearfield Loop Probe (Tekbox TBPS01)

20mm H-field

10mm H-field

5mm H-field

5mm E-field
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Nearfield Loop Probe

● Coupling varies with distance from DUT
– Not useful for quantitative intensity measurements
– But allows precise physical location of emitter to be found

● Often used for ratiometric EMC measurements
– Place probe a fixed distance from DUT
– Compare field strength before / after some change

● Ratio doesn’t scale 1:1 with far field strength
– But usually close enough if you add some safety margin
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Nearfield Loop Probe

● Start with sensitive probe for long range scanning
● Move to smaller one to pin down exact source
● May need external LNA for weak signals
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Nearfield Loop Probe: Strengths

● Very broadband (most go to several GHz)
● Only real option for benchtop EMC testing

– Calibrated antenna in anechoic chamber is definitive
– But they’re big and expensive!

● Allows spatial location of emitter to be found
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Nearfield Loop Probe: Weaknesses

● Very sensitive to exact position
– Not useful for quantitative measurements

● Ultra specialized
– Not useful for much besides EMC testing
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Nearfield Loop Probe: When to use

● Identifying the source of an EMC problem
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Current Probes
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Current Probe: Types

● Current transformer
● Hall effect
● Rogowski coil
● Flux gate
● Anisotropic magnetoresistive (AMR)
● Shunt resistor and differential probe
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AMR Positional B-Field Probe (Little Bee)

Photo courtesy
of Weston Braun

(Stanford)
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Current Probe: Strengths

● Doesn’t require breaking circuit to add shunt
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Current Probe: Weaknesses

● Some can only see AC
● Most are mechanically fragile

– Hall sensor on ferrite core is extremely impact sensitive
● Most have to clamp around a wire

– Difficult to measure signals on PCB
– Provide wire loop test points if planning to measure current

● Typically designed for 10s or 100s of amps
– Hard to measure really small currents
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Current Probe: When to use

● Power supply design
● Motor control applications
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High Voltage Probes
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High Voltage Probes

● Many different designs for different applications
– HV passive
– Fiber isolated
– HV differential
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High Voltage Passive Probes

● Classic R-C divider architecture
● Much higher attenuation

– Teledyne LeCroy PPE5KV is 100:1, 5 kV max
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High Voltage Fiber Isolated Probe

● Measuring small signal on huge DC offset
– Teledyne LeCroy HVFO108 has 35 kV common mode range
– Amplitude ranges from ±1V to ±40V

● Isolated front end driving optical fiber TOSA
● ROSA feeds scope input
● Often not a simple linear system

– Fiber transceivers have poor linearity
– HVFO108 uses FM over the fiber
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High Voltage Differential Probe

● Active differential probe for HV applications
● Pico TA044 ($1075)

– 70 MHz B/W
– Switchable 100:1 / 1000:1 attenuation
– 700 V RMS / 5 kV RMS differential range
– 2.5 kV RMS common mode range
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HV Probe: Strengths

● Extends range of scope to several kV
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HV Probe: Weaknesses

● Active probes often need batteries for remote head
– Can’t be powered directly by scope
– Some fancier ones include isolated DC-DC supplies

● Passive probes have frequency derating
– Often can’t hit rated BW and voltage at once

● Low bandwidth (tens to low hundreds of MHz)
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HV Probe: When to use

● Measuring high voltages
● If DC isolation is required for any other reason
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Effects of Limited Bandwidth
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5 GHz probe, 2.5 Gbps signal

Separate rise / stable / fall regions
Bits are equal amplitude
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5 GHz probe, 5 Gbps signal

Bits look more sinusoidal
Still roughly equal amplitude
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5 GHz probe, 10.3125 Gbps signal

Fast toggles do not reach full amplitude
This leads to ISI
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Miscellaneous Tips
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Passive Probe Holders
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Securing Cabling with Kapton Tape
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Concluding Remarks
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Conclusions

● Huge range of options, prices, features
– Some general purpose, some very specialized

● Easy to get garbage results with poor technique
● Understanding your probe helps you use it well



158

Questions?
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