glscopeclient Operator Manual

Andrew D. Zonenberg

March 14, 2023

Copyright (©)2012-2023 Andrew D. Zonenberg and contributors.. All rights reserved.

This document may be freely distributed and modified under the terms of the Creative Commons
Attribution-ShareAlike 3.0 Unported license (CC BY-SA 3.0).

Contents

1 Introduction
1.1 Introduction
1.2 Revision History o . o e

2 Legal Notices

2.1 Introduction
2.2 License Agreement
2.3 Trademarks
2.4 Third Party Licenses

2.4.1 avx_mathfun.h (zlib license) oo

3 Getting Started

3.1 Documentation Conventions
3.2 Host System Requirements
3.3 Instrument Support
3.4 Compilation e
3.4.1 Linux e
3.4.2 macOS
3.4.3 Windows oL
Installing from the package manager

Building from source Lo

3.5 Running glscopeclient oo
3.5.1 Configuration arguments
3.5.2 Console verbosity arguments
3.5.3 File arguments Lo
3.5.4 Instrument arguments oo

3.6 Design Philosophy L
3.7 Troubleshooting L
3.7.1 Corrupted or no graphical output in waveform areas

4 Transports
4.1 gpib Lo
4.2 lan . . . L e
4.3 IXI . e
4.4 null ..o
4.5 twinlan L Lo
4.6 Uart ..o e e
4.7 usbtme . ..o
4.8 VICD v v e e e e e e e
5 Oscilloscope Drivers

5.1 Agilent L
5.1.1 agilent

17
17
17
17
18
18
18
18
18

CONTENTS

Typical Performance (MSO6034A, LAN) 21

Typical Performance (MSOX3104T, LAN) 22

5.2 Antikernel Labs 22
5.2.1 akila e 22
5.2.2 aklabs 22

5.3 Demo 23
5.4 Digilent e 23
5.4.1 digilent oL e 23
Typical Performance (ADP3450, USB -> LAN) 24

5.5 DreamSource Labo 24
5.5.1 dslabs 24
Typical DSCope Performance (DSCope U3P100, USB3, localhost) 25

Typical DSLogic Performance (DSLogic U3Prol6, USB3, localhost) 25

5.6 Enjoy Digital 25
5.7 Hantek o 25
5.8 Keysight o 0 o e 25
5.8.1 agilent 25

5.9 Keysight DCA 25
5.10 Pico Technologies 26
5.10.1 pico . . .o e 26
Typical Performance (6824E, LAN) 26

511 RIEOL. « o oo e 2
5.11.1 rigol ... 26
Typical Performance (MSO5000 series, LAN) 26

5.12 Rohde & Schwarz 26
5.13 Saleae 27
5.14 Siglent 27
Typical Performance (SDS2104X+, LAN) 27

5.15 Teledyne LeCroy / LeCroy 28
5.15.1 lecroy e 28
Typical Performance (HDO9204, VICP) 29

Typical Performance (WaveRunner 8404M-MS, VICP) 29

5.15.2 lecroy fwp 29

5.16 Tektronix 30
5.16.1 Note regarding “lan" transport on MSO5/6 30
Typical Performance (MSO64, LXI, embedded OS) 30

5.17 XilinX . . oo o 30
Power Supply Drivers 31
6.1 GW Instek 31
6.1.1 gwinstek gpdx303s. 31

6.2 Rohde & Schwarz 31
6.2.1 rs_hme804x L 31
Main Window 33
7.1 Menu 33
7.1.1 File e 33
7.1.2 Setup e 34
7.1.3 View . . . o 34
7.14 Add .. 34
7.1.5 Window 35

7.1.6 Help . . . o o 35

CONTENTS

7.2

Toolbar

7.2.1 Capture buttons
7.2.2 History e
7.2.3 Refresh Settings.

7.2.4 Clea

TSWEEPS « v v v v e e e e e e e e e e e

7.2.5 Fullscreen
7.2.6 Opacity slider

8 Waveform Groups
Managing Groups o oo

8.1

9 Timeline

10 Triggers
Trigger Properties e
Serial Pattern Triggers

10.1
10.2
10.3

10.4

10.5
10.6
10.7
10.8

10.9

10.10

Dropout

10.3.1 Inputs
10.3.2 Parameters

Edge . .

10.4.1 Inputs . . . o . L
10.4.2 Parameters

Glitch .

Pulse Width
10.6.1 Parameters

Runt . .

10.7.1 Parameters
Slew Rate s
10.8.1 Parameters

UART .

10.9.1 Inputs L
10.9.2 Parameters

Window

10.10.1 Parameters e

11 Waveform Views
Navigation e

11.1
11.2
11.3
11.4
11.5

11.6
11.7

Plot Area

Y Axis Scale . ..o

Channel I
Cursors

nformation Box

11.5.1 Vertical Cursors
11.5.2 Horizontal Cursors
11.5.3 Markers s

Overlays
Statistics

12 History View

12.1
12.2
12.3

Pinning
Labeling
Estimatin

g Waveform Memory Usage

13 Protocol Analyzer View

35
35
35
36
36
36
36

39
40

41

43
43
43
44
44
44
44
44
44
44
44
45
45
45
45
45
45
46
46
46
46

47
47
47
48
48
49
49
50
51
o1
o1

53
53
o4
54

55

4 CONTENTS

13.1 Cursor Interaction L L 55
13.2 Packet Coloring e 56
13.3 Filtering 56
13.3.1 Expressions 57
13.3.2 Operators 57
13.3.3 Examples of filters 57

14 Filter Graph Editor 59
15 Filters 61
15.1 Introduction 61
15.1.1 Key Conceptso o 61
15.1.2 Conventions e 61

15.2 128b/130b . . o oo 63
15.3 64b/66b 64
15.3.1 Inputso 64
15.3.2 Parameters e 64
15.3.3 Output Signal 64

15.4 8B/10B (IBM) 65
15.4.1 Inputs 65
15.4.2 Parameters e 65
15.4.3 Output Signal 65

15.5 8B/10B (TMDS) 66
15.50.1 Inputs L 66
15.5.2 Parameters e 66
15.5.3 Output Signalo 66

15.6 AC Couple o 67
15.6.1 Inputs 67
15.6.2 Parameters e 67
15.6.3 Output Signal 67

15.7 ACRMS . o 68
15,71 Inputs L 68
15.7.2 Parameters 68
15.7.3 Output Signal 68

15.8 Area Under Curve e 69
15.8.1 Inputs 70
15.8.2 Parameters e 70
15.8.3 Output Signal 70

15.9 ADLB205 e 71
15.9.1 Inputs 71
15.9.2 Parameters Lo 71
15.9.3 Output Signal 71
15.10 Autocorrelation L 72
15.10.1 Inputs 72
15.10.2 Parameters e 72
15.10.3 Output Signal 72
15.11 Base e 73
15.11.1 Inputs e 73
15.11.2 Parameters 73
15.11.3 Output Signal 73
15.12 BIN Import o o o e 74

15.13 Burst Width 75

CONTENTS 5

15.13.1 Inputs e 75
15.13.2 Parameters e 75
15.13.3 Output Signal 75
1514 CAN .« L e 76
15.14.1 Inputso 76
15.14.2 Parameters e e 76
15.14.3 Output Signal 76
15.15 Channel Emulation 77
15.15.1 Inputso 78
15.15.2 Parameters 78
15.15.3 Output Signal 78
1516 CHp . . . o 79
15.16.1 Inputs oL 79
15.16.2 Parameters 79
15.16.3 Output Signal 79
15.17 Clock Recovery (D-PHY HS Mode) 80
15.18 Clock Recovery (PLL) 81
15.18.1 Inputs 81
15.18.2 Parameters e 81
15.18.3 Output Signal 81
15.19 Clock Recovery (UART) o 82
15.20 Complex Import e 83
15.20.1 Inputs 83
15.20.2 Parameters e 83
15.20.3 Output Signal 83
1521 CSV Export e 84
15.22 CSV Import e 85
15.23 Current Shunt 86
15.24 DCOffset o e 87
15.24.1 Inputs e 87
15.24.2 Parameters e e 87
15.24.3 Output Signal 87
15.25 DDJ . e 88
15.25.1 Inputs 88
15.25.2 Parameters 88
15.25.3 Output Signal 88
15.26 DDRI1 Command Bus e 89
15.27 DDR3 Command Bus 90
15.28 De-Embed e 91
15.28.1 Inputs o 91
15.28.2 Parameters L 91
15.28.3 Output Signal 91
15.29 Deskew 92
15.29.1 Inputso 92
15.29.2 Parameters L Lo 92
15.29.3 Output Signal e 92
15.30 Digital to NRZ e 93
15.30.1 Inputso 93
15.30.2 Parameters L L 93
15.30.3 Output Signal e 93
15.31 Digital to PAM4 94

15.31.1 Inputso 94

CONTENTS

15.31.2 Parameters L 94

15.31.3 Output Signal L 94
15.32 Divide e 95
15.33 Downconvert 96
15.34 Downsample 97
15.35 DRAM Clocks e 98
1536 DRAM Tred o e 99
1537 DRAM Trfec o 100
15.38 Duty Cycle e 101
15.39 DVI . . o e 102
15.40 Emphasis L 103
15.41 Emphasis Removalo 104
15.42 Emnhanced Resolution oo 105

15.42.1 Inputs 105

15.42.2 Parameters 105
15.43 Envelope e 106
15.44 Ethernet - 10baseT L 107
15.45 Ethernet - 100baseTX 108
15.46 Ethernet - 1000baseX 109

15.46.1 Parameters e 109

15.46.2 Output Signal 109
15.47 Ethernet - GMIL 110
15.48 Ethernet - QSGMIL. 111
15.49 Ethernet - RGMII 112
15.50 Ethernet - RMIT o 113
15.51 Ethernet - SGMIL. 114
15.52 Ethernet Autonegotiation Lo 115
15.53 Ethernet Autonegotiation Page 0oL 116
15.54 Ethernet Base-X Autonegotiation 117
15.55 Eye Bit Rate 118
15.56 Eye Height 119
15.57 Eye P-P Jitter 120
15,58 Eye Patterno 121
15.59 Eye Period 122
15.60 Eye Width 123
15.61 Fall . . . oo 124
15.62 FFT . . o o e 125
15.63 FIR e 126
15.64 Frequency 127
15.65 FSK . . o o 128
15.66 Group Delay e 129

15.66.1 Inputs 129

15.66.2 Parameters L 129

15.66.3 Output Signal 129
15.67 Histogram L 130

15.67.1 Inputs e 130

15.67.2 Parameters L 130

15.67.3 Output Signal 130
15.68 Horizontal Bathtub oo 131
15.69 HDMI e 132
1570 IPC .o oo 133

15.71 IPCEEPROM o o 134

CONTENTS 7

15.72 TPC RegiSter o 135
15.73 IBIS Driver e 136

15.73.1 Inputs 136

15.73.2 Parameters e 136

15.73.3 Output Signal 136
15.74 Invert e 137
15.75 Imtel eSPI e 138
1576 IPv4A . . L o e 139
15.77 IQ Squelch 140
15.78 Jitter e 141

15.78.1 Inputs 141

15.78.2 Parameters e 141

15.78.3 Output Signal 141
15.79 Jitter Spectrum L 142
15.80 JTAG e 143
15.81 Magnitude 144
15.82 MDIO e 145
15.83 Memory 146
15.84 MIL-STD-1553 e 147
15.85 MIPI D-Phy Data 148
15.86 MIPI D-Phy Escape Mode 149
15.87 MIPI D-Phy Symbol 150
15.88 MIPI DSI Frame e 151
15.89 MIPI DSI Packet e 152
1590 Moving AVErage oo e e 153
15.91 Multiply e 154
15.92 NoiSe. o e 155
15.93 OFDM Demodulator e 156
15.94 Overshoot e 157
15.95 PAM4 Demodulator 158
15.96 Parallel Bus 159
15.97 PCle Data Link 160
15.98 PCle Gen 1/2 Logical 161
15.99 PCle Gen 3/4/5 Logical 162
15.100 PCle Link Trainingo 163
15.101 PCle Transport o o 164
15.102 Peak Hold e 165
15.103 Peak-to-Peak 166
15.104 Period 167
15.105 Phase 168
15.106 Phase Nonlinearity 169

15.106.1 Inputs e 169

15.106.2 Parameters L 169

15.106.3 Output Signal 169
15.107 PRBS . . . o e 170
15.108 Pulse Width o 171

15.108.1 Inputs L 171

15.108.2 Output Signal 171
15.109 Reference Plane Extension oo L 172
15.110 Rj+BUj . . o e 173
15111 QSPIL. . . . o e 174

15.112 Quadrature 175

CONTENTS

15.113 Rise . . . o o o e 176
15.114 S-Parameter Cascade 177
15.115 S-Parameter De-Embed oo 178
15,116 Scale e 179
15.117 SD Card Command L 180
15.118 Sine e 181
15.119 Spectrogramo e 182
15.120 SPIL. . . o o 183
15.121 SPIFlash 0 o e 184
15.122 Squelch e 185
15123 Step . . o e 186
15.124 Subtract e 187
15.124.1 Inputso 187
15.124.2 Parameters e e e 187
15.124.3 Output Signal 187
15.125 SWD . . o o 188
15.125.1 Inputs Lo 188
15.125.2 Parameters e 188
15.125.3 Output Signal 188
15.126 SWD MEM-AP e 190
15.127 Tachometer e 191
15.128 Tapped Delay Line 192
15.129 TCP . . . o e 193
15.130 TDR o e 194
15.131 TDR Step De-Embed o 195
15.132 Time Outside Level e 196
15.132. 1 Inputs L 196
15.132.2 Parameters e 196
15.133 Thermal Diode 197
15.134 Threshold e 198
15.134. 1 Inputs L 198
15.134.2 Parameters e 198
15.134.3 Output Signal 198
15.135 TIE o e 199
15136 Top . . o . o e 200
15.136.1 Inputs 200
15.136.2 Parameters Lo 200
15.136.3 Output Signal 200
15.137 Touchstone Export 201
15.138 Touchstone Import 202
15.139 Trend L e 203
15.140 TRC Import o e 204
15.141 UART . . . o e 205
15.142 Unwrapped Phase 206
15.142.1 Inputs Lo 206
15.142.2 Parameters 206
15.142.3 Output Signal 206
15.143 USB 1.0 / 2.x Activity o o v v 207
15.144 USB 1.0 /2x Packet 208
15145 USB 1.0 /2xPCS 209
15.146 USB 1.0 / 2x PMA 210

15.147 Undershoot 211

CONTENTS

15.148
15.149
15.150
15.151
15.152
15.153
15.154
15.155
15.156
15.157
15.158

Upsample e
VCD Import o
Vector Frequency e
Vector Phase
Vertical Bathtub
VICP . e
Waterfall
WAV Import
WFEFM Import o
Windowed Autocorrelation
Window

15.158.1 Inputso
15.158.2 Parameters
15.158.3 Output Signal

16 Export Formats

16.1
16.2

CSV s
Touchstone

17 Internals

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11

Introduction
Instruments
SCPI Devices
Transports
Oscilloscopes o
Channels
Streams
Triggers
Waveforms e
Filters
Plugins e

17.11.1 LInUuX . . . o o o
17.11.2 Windows

212
213
214
215
216
217
218
219
220
221
222
222
222
222

223
223
223

10

CONTENTS

Chapter 1

Introduction

1.1 Introduction

This document is the user manual for glscopeclient, a user interface and signal analysis tool for
oscilloscopes and logic analyzers. As of this writing, glscopeclient is under active development but
has not had a formal v0.1 release and should be considered alpha quality.

This is free software: you are free to change and redistribute it. There is NO WARRANTY, to
the extent permitted by law.

1.2 Revision History

e March 14, 2023: [in progress| Initial draft

11

12

CHAPTER 1. INTRODUCTION

Chapter 2

Legal Notices

2.1 Introduction

glscopeclient, libscopehal, and the remainder of the project are all released under the 3-clause BSD
license (reproduced below). This is a permissive license, explicitly chosen to encourage integration
with third-party open source and commercial projects.

2.2 License Agreement

Copyright (c) 2012-2022 Andrew D. Zonenberg and contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions, and the following disclaimer in the documentation and/or other materials provided
with the distribution.

e Neither the name of the author nor the names of any contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHORS BE HELD LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

13

14 CHAPTER 2. LEGAL NOTICES

2.3 Trademarks

This document frequently mentions the names of various test equipment vendors and products in
order to discuss glscopeclient’s compatibility with said products. The reader should assume that
these are all trademarks of their respective owners.

2.4 Third Party Licenses

TODO:

e OpenClipArt (dialog-close.png)

yaml-cpp (shared, MIT license)

gtkmm (shared, LGPL)
e FFTS (shared, BSD-3)

liblxi (shared, BSD-3/EPICS)

2.4.1 avx_ mathfun.h (zlib license)

AVX implementation of sin, cos, sincos, exp and log
Based on "sse _mathfun.h", by Julien Pommier http://gruntthepeon.free.fr/ssemath/

Copyright (C) 2012 Giovanni Garberoglio Interdisciplinary Laboratory for Computational Sci-
ence (LISC) Fondazione Bruno Kessler and University of Trento via Sommarive, 18 1-38123 Trento

(Italy)

This software is provided ’as-is’, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

3. This notice may not be removed or altered from any source distribution.

Chapter 3

Getting Started

3.1 Documentation Conventions

Items to be selected from a menu are displayed in monospace font.

Multilevel menu paths are separated by a / character. For example, Attenuation / 1x means
to open the Attenuation submenu and select the 1x item.

If there are multiple options for a menu or configuration option, they are displayed in square
brackets and separated by a | character. For example, Move waveform to / Waveform Group [1]2]
means to select either Waveform Group 1 or Waveform Group 2 from the Move waveform to menu.

This project is under active development and is not anywhere near feature complete! As a result,
this document is likely to refer to active bug or feature request tickets on the GitHub issue trackers.
Issues are referenced as repository:ticket, for example scopehal-apps:3.

3.2 Host System Requirements

NOTE: This section needs to be rewritten once the Vulkan port is complete!!

The majority of development is performed on Linux operating systems (primarily Debian and
Arch), although experimental Windows support is available. glscopeclient uses gtkmm as the Ul
toolkit. Current development mostly uses 3.24 but any recent 3.x version should work.

Any 64-bit Intel or AMD processor should be able to run glscopeclient. If AVX2 and/or
AVX512F support is present glscopeclient will use special optimized versions of some signal process-
ing functions, however neither instruction set is required. Compiling in 32-bit mode is not supported
due to the significant RAM requirements.

A mouse with scroll wheel, or touchpad with scroll gesture support, is mandatory to enable full
use of the Ul. We may explore alternative input methods for some Ul elements in the future.

OpenGL 4.2 or later is required, as well as several extensions:

e GL _ARB_arrays of arrays (or OpenGL 4.3)
e GL ARB_compute shader (or OpenGL 4.3)
e GL ARB_shader storage buffer object (or OpenGL 4.3)

e GL EXT blend equation separate

15

https://github.com/glscopeclient/scopehal-apps/issues/3

16 CHAPTER 3. GETTING STARTED

The corresponding minimum hardware requirement is an AMD Radeon HD 5000, NVIDIA
GeForce GTX 6xx series discrete GPU, or Intel Skylake or newer integrated GPU, plus suitably
up-to-date drivers. On Linux with recent Mesa, Intel integrated GPUs as old as Ivy Bridge may be
used.

TODO: what AMD integrated/ARM GPUs started supporting GL 4.27

To check for necessary graphics card support on Linux:

glxinfo | grep GL_ARB_arrays_of_arrays

glxinfo | grep GL_ARB_compute_shader

glxinfo | grep GL_ARB_shader_storage_buffer_object
glxinfo | grep GL_EXT_blend_equation_separate
glxinfo | grep "OpenGL version string”

The minimum RAM requirement to actually launch glscopeclient is relatively small (the default
demo configuration uses under 512 MB) however history mode and deep captures can easily consume
many GB of RAM very rapidly. We suggest 8GB as a reasonable minimum, with 32 or more
encouraged for deep history.

3.3 Instrument Support

glscopeclient uses the libscopehal library to communicate with oscilloscopes, so any libscopehal-
compatible hardware should work with glscopeclient. See the Oscilloscope Drivers section for more
details on which hardware is supported and how to configure specific drivers.

3.4 Compilation

glscopeclient can be compiled on Linux, macOS, and Windows, but the specific steps that have to
be taken differ quite a lot between these the three.

3.4.1 Linux

1. Install dependencies.

On Debian/Ubuntu:

sudo apt install build-essential cmake pkg-config libglm-dev \
libgtkmm-3.0-dev libsigc++-2.0-dev libyaml-cpp-dev \
liblxi-dev texlive texlive-fonts-extra libglew-dev \
catch2 libvulkan-dev glslang-dev libglfw3-dev

On Fedora(this section is out of date):

sudo dnf install gtkmm3@-devel cmake pkg-config glm-devel \
texlive libyaml-devel yaml-cpp-devel glew-devel \
catch-devel vulkan-devel

If you are using an older stable release (such as Debian Buster), you may need to install
catch2 from source (https://github.com/catchorg/Catch2). Alternatively, you may pass -
DBUILD TESTING=OFF to CMake to disable unit testing.

2. Install FFTS library:

cd ~
git clone https://github.com/anthonix/ffts.git

3.4. COMPILATION 17

cd ffts

mkdir build

cd build

cmake .. -DENABLE_SHARED=ON -DCMAKE_INSTALL_PREFIX=/usr
make -3j4

sudo make install

3. Install Vulkan SDK:

cd ~

mkdir vulkan

cd vulkan

wget https://sdk.lunarg.com/sdk/download/1.3.224.1/1linux/vulkansdk-
linux-x86_64-1.3.224.1.tar.gz

tar xf vulkansdk-linux-x86_64-1.3.224.1.tar.gz

rm -f vulkansdk-linux-x86_64-1.3.224.1.tar.gz

export VULKAN_SDK=~/vulkan/1.3.224.1/x86_64

sudo cp -r $VULKAN_SDK/include/vulkan/ /usr/local/include/

sudo cp -P $VULKAN_SDK/lib/libvulkan.so* /usr/local/lib/

sudo cp $VULKAN_SDK/lib/libVkLayer_x.so /usr/local/lib/

sudo mkdir -p /usr/local/share/vulkan/explicit_layer.d

sudo cp $VULKAN_SDK/etc/vulkan/explicit_layer.d/VkLayer_*.json /usr/
local/share/vulkan/explicit_layer.d

sudo ldconfig

4. Build scopehal and scopehal-apps:

export VULKAN_SDK=~/vulkan/1.3.224.1/x86_64

export PATH=$VULKAN_SDK/bin: $PATH

export LD_LIBRARY_PATH=$VULKAN_SDK/1ib${LD_LIBRARY_PATH:+:
$LD_LIBRARY_PATH}

export VK_LAYER_PATH=$VULKAN_SDK/etc/vulkan/explicit_layer.d

cd ~

git clone --recursive https://github.com/glscopeclient/scopehal -apps.
git

cd scopehal -apps

mkdir build

cd build

cmake ../ -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr

make -j4

5. Install scopehal and scopehal-apps:

cd ~/scopehal -apps/build
sudo make install

3.4.2 macOS

1. Install dependencies.
With Homebrew (brew.sh):

brew install pkg-config gtk+3 gtkmm3 glfw cmake yaml-cpp glew catch2
libomp

2. Install Vulkan SDK:

Download and install the Vulkan SDK from sdk.lunarg.com/sdk/download/1.3.231.1/mac/vulkansdk-
macos-1.3.231.1.dmg.

https://brew.sh
https://sdk.lunarg.com/sdk/download/1.3.231.1/mac/vulkansdk-macos-1.3.231.1.dmg
https://sdk.lunarg.com/sdk/download/1.3.231.1/mac/vulkansdk-macos-1.3.231.1.dmg

18 CHAPTER 3. GETTING STARTED

3. Build scopehal and scopehal-apps:

export VULKAN_SDK=~/VulkanSDK/1.3.231.1/mac0S

export PATH=${PATH}:${VULKAN_SDK}/bin:/opt/homebrew/bin

cd ~

git clone --recursive https://github.com/glscopeclient/scopehal -apps.
git

cd scopehal -apps

mkdir build

cd build

cmake ../ -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr -
DCMAKE_PREFIX_PATH="/opt/homebrew;/opt/homebrew/opt/libomp"”

make -j4

4. Install scopehal and scopehal-apps:

Installation on macOS is not yet complete. The binaries can be found in the build directory,
such as ngscopeclient in $HOME /scopehal-apps/build /src/ngscopeclient.

3.4.3 Windows

On Windows, we make use of the MSYS2 development environment, which gives us access to
the MingGW-w64 toolchain. Since this toolchain allows glscopeclient to be compiled as a native
Windows application, the project might be run outside of MSYS2.

Installing from the package manager

pacman -Sy
pacman -S mingw-w64-x86_64-scopehal -apps

See also mingw-w64-x86_64-eda.

Building from source

1. Download and install MSYS2. You can download it from msys2.org or github.com /msys2/msys2-
installer /releases
It is of utmost importance that all steps outlined on the website are followed precisely, even
if they might seem unnecessary. This will avoid lots of hard to diagnose problems later on in
the build.

All following steps are to be done in a MinGW64 shell (not in a MSYS, MINGW32, CLANG64,
CLANG32 or UCRT64 shell, which also get installed by the MSYS2 installer).

2. Install WiX Toolset v3.11 (required to build the Windows x64 MSI) You shall download and
install WiX Toolset v3.11 in

C:\Program Files (x86)\WiX Toolset v3.11

https://wixtoolset.org/docs/wix3/

3. Install git and the toolchain:

pacman -S git wget mingw-w64-x86_64-cmake mingw-w64-x86_64-toolchain

https://packages.msys2.org/group/mingw-w64-x86_64-eda
https://www.msys2.org/
https://github.com/msys2/msys2-installer/releases
https://github.com/msys2/msys2-installer/releases

3.4. COMPILATION 19

4. Build glslang tags/sdk-1.3.224.1:

Launch MSYS2 or MINGW64 as Administrator only for this step (it is mandatory to do the
install in default path C:
VulkanSDK ...)

Windows mingw64 glslang build (as it is not fully integrated in
VulkanSDK-1.3.224.1 for Windows and built with Visual Studio 2017)

cd ~
git clone https://github.com/KhronosGroup/glslang.git
cd glslang

git checkout tags/sdk-1.3.224.1

git clone https://github.com/google/googletest.git External/googletest
cd External/googletest

git checkout 0c400f67fcf305869c5fb113dd296eca266c9725

cd ../..

./update_glslang_sources.py

SOURCE_DIR=~/glslang

BUILD_DIR=$SOURCE_DIR/build

mkdir -p $BUILD_DIR

cd $BUILD_DIR

cmake -DCMAKE_BUILD_TYPE=Release -G"MinGW Makefiles” $SOURCE_DIR -
DCMAKE _INSTALL_PREFIX="$(pwd)/install”

cmake --build . --config Release --target install

5. Install Vulkan SDK:

Launch MSYS2 or MINGW64 as Administrator only for this step (it is mandatory to do the
install in default path C:
VulkanSDK ...)

cd ~

wget https://sdk.lunarg.com/sdk/download/1.3.224.1/windows/VulkanSDK
-1.3.224.1-Installer.exe

./VulkanSDK-1.3.224.1-Installer.exe --accept-licenses --default-answer
--confirm-command install

rm -f VulkanSDK-1.3.224.1-Installer.exe

6. Check out the code

cd ~
git clone --recursive https://github.com/glscopeclient/scopehal -apps

7. Execute makepkg-mingw in subdir MSYS2:

cd ~/scopehal -apps/msys?2

export VK_SDK_PATH=/c/VulkanSDK/1.3.224.1

export PATH=$VK_SDK_PATH/Bin:$PATH

export VULKAN_SDK=$VK_SDK_PATH

export GLSLANG_BUILD_PATH=~/glslang/build/install

MINGW_ARCH=mingw64 makepkg-mingw --noconfirm --noprogressbar -sCLf

The unit tests will not be run as part of this build - if you would like to run them, you will need
to provide catch2 (https://github.com/catchorg/Catch2), and remove the -DBUILD TESTING=OFF
flag from the PKGBUILD recipe in subdir msys2.

8. Installing, copying binaries and running glscopeclient.

20

3.5

CHAPTER 3. GETTING STARTED

Since glscopeclient is built using the MinGW toolchain, it depends on a rather large number
of dynamic libraries. The recommended procedure is to install the package generated by
makepkg-mingw on a MinGW64 shell:

cd ~
cd msys?2
pacman -U *.zst

This is equivalent to the package installed through pacman -S, but it’s built from the checked
out commit, instead of the pinned version available from MSYS2 repositories.

The *.zst package includes metadata about the dependencies. Therefore, when installed
through pacman, those will be installed automatically. However, some users might want to
use glscopeclient outside of MSYS2. In those cases, it needs to be installed first, and then
a tarball /zipfile can be created by collecting all the dependencies. This last approach is not
officially supported yet.

Running glscopeclient

When running glscopeclient with no arguments, an empty session (Fig. 3.1) is created. To perform
useful work, you can:

Open a saved session (File | Open)

Open a recently used session (File | Recent Files)

Import waveforms from a third party file format(Add | Import)
Connect to an instrument (Add | Oscilloscope, Add | Multimeter)

Generate a synthetic waveform (Add | Generate)

Figure 3.1: Empty glscopeclient session

3.5.1 Configuration arguments

Most of these arguments are intended for developers, but they can help troubleshoot unusual bugs.

3.5. RUNNING GLSCOPECLIENT 21

® —noavx2
Do not use AVX2 vector optimizations even if the CPU supports it.

e —noavxb512f
Do not use AVX512F vector optimizations even if the CPU supports it.

e —noglint64
Do not use GL_ARB_gpu_shader_int64 even if the GPU supports it.

e —nogpufilter
Do not use Vulkan (GPU accelerated) implementations of filter blocks, revert to software
fallback.

3.5.2 Console verbosity arguments

glscopeclient takes standard liblogtools arguments for controlling console debug verbosity.

If no verbosity level is specified, the default is “notice" (3). (We suggest using —debug for routine
use until the v1.0 release to aid in troubleshooting.)

e —debug
Sets the verbosity level to “debug" (5).

e -1 [file], -logfile [file]
Writes a copy of all log messages to file. This is preferred over simply redirecting output
with pipes, as console escape sequences are stripped from the file log output.

e -L [file], -logfile-lines [file]
Same as -logfile except line buffering is turned on.

e —q, —quiet
Reduces the verbosity level by one. Can be specified more than once to lower verbosity by
several steps.

e —trace [class], —trace [class::function]
Enables extra debug output from the class class or the function class::function. Has no
effect unless —debug is also specified.

e —stdout-only
Sends all logging output to stdout. By default, error (level 1) and warning (level 2) messages
go to stderr.

e -verbose
Sets the verbosity level to “verbose" (4).

3.5.3 File arguments

The file extension is used to determine the format. File extensions are case sensitive and must be
lowercase to be correctly interpreted.

e [file.scopesession] Loads a saved session.

e [file.bin]
Imports waveform data from the binary format used by Agilent, Keysight, and Rigol oscillo-
scopes.

22

CHAPTER 3. GETTING STARTED

e [file.complex]

Imports complex I/Q data from a file. The file must contain interleaved (I, Q) pairs in either
8-bit signed /unsigned integer, 16-bit signed integer, 32-bit normalized floating point, or 64-bit
normalized floating point format.

The default format is 8 bit signed integer and may be changed from the filter graph editor or
channel properties dialog once the file is loaded. There is currently no way to specify other
formats on the command line.

[file.csv]

Imports sample data from a CSV (comma-separated-value) file. More than one CSV file can
be loaded at once (displayed as separate points in history) by specifying multiple file names
as long as they have identical column schemas.

Lines starting with a '#’ character are treated as comments and generally ignored by the
parser. (If the comment format matches that used by Digilent’s WaveForms utility, timestamps
and other metadata are extracted from the comments.)

If the first row of the CSV contains non-numeric characters, it is treated as a header row.
Header content in the timestamp column is ignored; headers in other columns are used as
channel names in the imported waveform.

The first column of the CSV must contain sample timestamps, in seconds. Scientific notation
is supported. Timestamps must be monotonic (each row must have a timestamp strictly
greater than that of the previous row).

glscopeclient uses a heuristic to detect uniformly sampled waveforms, which enabled certain
optimizations for display and signal processing. If the standard deviation of intervals between
samples is less than 1% of the average sample interval, the waveform is assumed to be uniformly
sampled and timestamps are rounded to the nearest multiple of the average interval. If the
deviation is greater, the waveform is assumed to be sparsely sampled and timestamps are not
modified.

[file.trc]
Imports waveform data from a Teledyne LeCroy .trc binary waveform file.

[file.vcd]
Imports digital waveform data from a VCD (value change dump) file, typically created by a
logic analyzer or HDL simulator.

[file.wav]
Imports sample data from a WAV file.

[file.wfm]

Imports sample data from a Tektronix .wfm file. This import filter is still experimental and
may not support all features of the .wfm file format yet. If you have trouble importing some
.wim files please file a ticket on GitHub.

—-nodata
When loading a .scopesession file, load settings only and not saved waveform data.

—reconnect
When loading a .scopesession file, reconnect to the instrument and resume remote control.
Current instrument settings are overwritten with the configuration from the saved session.

-retrigger
When loading a .scopesession file, arm the trigger immediately. has no effect unless -reconnect
is also specified.

3.6. DESIGN PHILOSOPHY 23

3.5.4 Instrument arguments

Example:

./glscopeclient --debug \
mylecroy:lecroy:vicp: myscope.example.com:1234 \
myrigol:rigol:lan:rigol.example.com

e [connection string]
Connects to the specified instrument. By default, all channels are enabled and displayed.

Each instrument is described by a “connection string" containing four colon-separated fields.

e Nickname. This can be any text string not containing spaces or colons. If you have only one
instrument it’s largely ignored, but when multiple instruments are present channel names in
the Ul are prefixed with the nickname to avoid ambiguity.

e Driver name. This is a string identifying the command protocol the scope uses. Note that
not all scopes from the same vendor will use the same command set or driver!

e Transport. This is is a string describing how the driver connects to the scope (e.g. RS232 or
Ethernet)

e Arguments for the driver identifying the device to connect to, separated by colons. This varies
by driver but is typically a hostname:port combination, TTY device path, or similar.

3.6 Design Philosophy

glscopeclient’s Ul is heavily mouse driven and context based. Space used by always-visible buttons,
sliders, etc is kept to a minimum in order to keep as much screen real estate as possible usable for
waveform display. Additional controls are displayed in menus or pop-up dialogs, then hidden as
soon as they are not needed.

Most UI elements can be interacted with by left clicking (select), left dragging (move), using the
scroll wheel (zoom), double clicking (open properties dialog), or right clicking (context menu).

If you have a multi-button gaming mouse, button 8 stops the trigger and button 9 starts. These
bindings are not currently configurable.

Most text fields allow SI prefixes for scaling values (mV, us, GHz, etc).

3.7 Troubleshooting

3.7.1 Corrupted or no graphical output in waveform areas

Some users have reported problems with libglvnd under Linux. Changing the CMP0072 declaration
in glscopeclient/CMakeLists.txt from NEW to OLD may fix it.

24

CHAPTER 3. GETTING STARTED

Chapter 4

Transports

4.1 gpib

SCPI over GPIB.

This transport takes up to four arguments: GPIB board index, primary address, secondary
address, and timeout value. Only board index and primary address are required.

NOTE: The current implementation of this driver only works on Linux, using the linux-gpib
library.

Example:

glscopeclient myscope:keysightdca:gpib:0:7

4.2 lan

SCPI over TCP with no further encapsulation.
This transport takes two arguments: hostname/IP and port number.

If port number is not specified, uses TCP port 5025 (IANA assigned) by default. Note that
Rigol oscilloscopes use the non-standard port 5555, not 5025, so the port number must always be
specified when using a Rigol instrument.

Example:

glscopeclient myscope:rigol:1an:192.0.2.9:5555

4.3 Ixa

SCPI over LXI VXI-11.

Note that due to the remote procedure call paradigm used by LXI, it is not possible to batch
multiple outstanding requests to an instrument when using this transport. Some instruments may
experience reduced performance when using LXI as the transport.

Example:

glscopeclient myscope:tektronix:1xi:192.0.2.9

25

26 CHAPTER 4. TRANSPORTS

4.4 null

This transport does nothing, and is used as a placeholder for development simulations or non-SCPI
instruments.

NOTE: Due to limitations of the current command line argument parsing code, an argument
must be provided to all transports, including this one. Since the argument is ignored, any non-empty
string may be used.

Example:

glscopeclient sim:demo:null:blah

4.5 twinlan

This transport is used by some Antikernel Labs oscilloscopes, as well as most of the bridge servers
used for interfacing libscopehal with USB oscilloscopes’ SDKs. It takes three arguments: host-
name/IP and two port numbers.

It uses two TCP sockets on different ports. The first carries SCPI text (as in the “lan" transport),
and the second is for binary waveform data.

If port numbers are not specified, the SCPI port defaults to the IJANA standard of 5025, and
the data port defaults to 5026. If the SCPI port but not the data port is specified, the data port
defaults to the SCPI port plus one.

4.6 uart

SCPI over RS-232 or USB-UART.

This transport takes two arguments: device path (required) and baud rate (optional). If baud
rate is not specified, it defaults to 115200.

Example:

glscopeclient myscope:rigol:uart:/dev/ttyUSB0:115200

4.7 usbtmc

SCPI over USB Test & Measurement Class protocol.
This transport takes one argument: the path to the usbtmc kernel device object.

NOTE: The current implementation of this driver only works on Linux. There is currently no
support for USBTMC on Windows (see scopehal:301)

Example:

glscopeclient myscope:siglent:usbtmc:/dev/usbtmco

4.8 vicp

SCPI over Teledyne LeCroy Virtual Instrument Control Protocol.

4.8. VICP 27

This transport takes two arguments: hostname/IP and port number.
If port number is not specified, uses TCP port 1861 (IANA assigned) by default.

Example:

glscopeclient myscope:lecroy:vicp:192.0.2.9

28

CHAPTER 4. TRANSPORTS

Chapter 5

Oscilloscope Drivers

5.1 Agilent

Agilent devices support a similar similar SCPI command set across most device families.

Please see the table below for details of current hardware support:

Device Family Driver Transport Notes

DSO5000 series agilent lan Not recently tested, but should work.

DSO6000 & MSO6000 series agilent lan Working. No support for digital chan-
nels yet.

DSO7000 & MSO7000 series agilent lan Untested, but should work. No sup-
port for digital channels yet.

MSOX-2000 series agilent lan

MSOX-3000 series agilent lan

5.1.1 agilent
Typical Performance (MS0O6034A, LAN)

Interestingly, performance sometimes gets better with more channels or deeper memory. Not sure
why.

29

30 CHAPTER 5. OSCILLOSCOPE DRIVERS

Channels Memory depth WFM/s

1 1K 66
4 1K 33
4 4K 33
1 40K 33
1 4K 22
1 20K 22
4 20K 22
1 100K 22
4 10K 17
4 40K 12
1 200K 11
1 400K 8

4 100K 6.5
4 200K 4

1 1M 3.7
4 400K 2.3
1 1M 1

4 1M 1

4 AM 0.2

Typical Performance (MS0OX3104T, LAN)

Channels Memory depth WFM/s

1 2.5K 3.3
4 2.5K 2.5
1 2.56M 1.0
4 2.0M 0.5

5.2 Antikernel Labs

Device Family Driver Notes

Internal Logic Analyzer IP akila
BLONDEL Oscilloscope Prototype aklabs

5.2.1 akila

This driver uses a raw binary protocol, not SCPI.

Under-development internal logic analyzer analyzer core for FPGA design debug. The ILA uses
a UART interface to a host system. Since there’s no UART support in scopehal yet, socat must be
used to bridge the UART to a TCP socket using the “lan" transport.

5.2.2 aklabs

This driver uses two TCP sockets. Port 5025 is used for SCPI control plane traffic, and port 50101
is used for waveform data using a raw binary protocol.

5.3. DEMO 31

5.3 Demo

The “demo" driver is a simulation-only driver for development and training purposes, and does not
connect to real hardware.

It ignores any transport provided, and is normally used with the “null" transport.

The demo instrument is intended to illustrate the usage of glscopeclient for various types of
analysis and to aid in automated testing on computers which do not have a connection to a real
oscilloscope, and is not intended to accurately model the response or characteristics of real world
scope frontends or signals.

It supports memory depths of 10K, 100K, 1M, and 10M points per waveform at rates of 1, 5,
10, 25, 50, and 100 Gsps. Four test signals are provided, each with 10 mV of Gaussian noise and a
5 GHz low-pass filter added (although this can be disabled under the channel properties)

Test signals:

e 1.000 GHz tone

e 1.000 GHz tone mixed with a second tone, which sweeps from 1.100 to 1.500 GHz
e 10.3125 Gbps PRBS-31

e 1.25 Gbps repeating two 8B/10B symbols (K28.5 D16.2)

Device Family Driver Transport Notes

Simulator demo null

5.4 Digilent

Digilent oscilloscopes using the WaveForms SDK are all supported using the “digilent" driver in
libscopehal. This driver connects using the “twinlan" transport to a socket server which links
against the Digilent WaveForms SDK. This provides network transparency, and allows the Digilent
bridge server to be packaged separately for distribution and only installed by users who require it.

As of 2022-03-09, analog input channels on the Analog Discovery Pro and Analog Discovery
2 have been tested and are functional, however only basic edge triggering is implemented so far.
Analog inputs on other devices likely work, however only these two have been tested to date.

Analog outputs, digital inputs, and digital outputs are currently unimplemented, but are planned
to be added in the future.

5.4.1 digilent

Device Family Driver Transport Notes
Electronics Explorer digilent twinlan Not tested, but probably works
Analog Discovery digilent twinlan Not tested, but probably works
Analog Discovery 2 digilent twinlan No digital channel support

No analog output support
Analog Discovery Pro digilent twinlan No digital channel support

No analog output support

Digital Discovery digilent twinlan No digital channel support,
so pretty useless for now

https://github.com/azonenberg/scopehal-waveforms-bridge

32 CHAPTER 5. OSCILLOSCOPE DRIVERS

Typical Performance (ADP3450, USB -> LAN)

Channels Memory depth WFM/s

4 64K 25.8
2 64K 32.3
1 64K 33.0

5.5 DreamSource Lab

DreamSourceLabs oscilloscopes and logic analyzers supported in their fork of sigrok (“libsigrok4DSL”
distributed as part of their “DSView” software package) are supported through the “dslabs” driver
in libscopehal. This driver connects using the “twinlan” transport to a socket server which links
against libsigrok4DSL. This provides network transparency, and allows the DSLabs bridge server to
be packaged separately for distribution and only installed by users who require it.

As of 2022-03-22, a DSCope U3P100 and a DSLogic U3Prol6has been tested and works ade-
quately. Other products may work also, but are untested.

On DSCope: Only edge triggers are supported. ‘Any’ edge is not supported. “Ch0 && Ch1”
and “ChO || Ch1” trigger modes are not supported.

On DSLogic: Only edge triggers are supported. All edges are supported. There is currently no
way to configure a trigger on more than one channel. Serial / multi-stage triggers are not supported.

Known issues pending fixes/refactoring:

e Interleaved sample rates are not correctly reported in the timebase dialog (but are in the
waveform display)

e Trigger position is quantized to multiples of 1% of total capture

e Non-localhost performance, and responsiveness in general may suffer as a result of hacky flow
control on waveform capture

e DSLogic depth configuration is confusing and performance could be improved (currently only
buffered more is supported)

e DSLogic devices trigger even if pre-trigger buffer has not been filled, leading to a small pre-
trigger waveform in some cases

5.5.1 dslabs
Family / Device Driver Transport Notes
DSCope U3P100 dslabs twinlan Tested, works
DSLogic U3P16 dslabs twinlan Tested, works
DSCope (others) dslabs twinlan Not tested, but probably works

DSLogic (others) dslabs twinlan Not tested, but probably works

https://github.com/glscopeclient/scopehal-sigrok-bridge

5.6. ENJOY DIGITAL

33

Typical DSCope Performance (DSCope U3P100, USB3, localhost)

Channels Memory depth Sample Rate WFM/s UlI-unconstrained
WFM/s
2 1M 100MS/s 14 50
5M 500MS /s 4.5 14
1 5M 1GS/s 8.3 32

Typical DSLogic Performance (DSLogic U3Prol6, USB3, localhost)

Channels Memory depth Sample Rate WFM/s UlI-unconstrained
WFM/s

16 500k 100MS/s 16 44

16 500k 500MS/s 16 55

5.6 Enjoy Digital

TODO (scopehal:79)

5.7 Hantek

TODO (scopehal:26)

5.8 Keysight

Keysight devices support a similar similar SCPI command set across most device families. Many
Keysight devices were previously sold under the Agilent brand and use the same SCPI command

set, so they are supported by the “agilent" driver.

Please see the table below for details of current hardware support:

5.8.1 agilent

Device Family Driver Notes

MSOX-2000 series agilent

MSOX-3000 series agilent

MSOX-3000T series agilent

5.9 Keysight DCA

A driver for the Keysight/Agilent/HP DCA series of equivalent-time sampling oscilloscopes.

Device Family Driver Notes

86100A keysightdca

https://github.com/glscopeclient/scopehal/issues/79
https://github.com/glscopeclient/scopehal/issues/26

34 CHAPTER 5. OSCILLOSCOPE DRIVERS

5.10 Pico Technologies

Pico oscilloscopes all have slightly different command sets, but are supported using the “pico" driver
in libscopehal. This driver connects via a TCP socket to a socket server (azonenberg/scopehal-pico-
bridge) which connects to the appropriate instrument using Pico’s binary SDK.

Device Family Driver Notes

3000D series pico Early development, incomplete
6000E series pico
5.10.1 pico

Typical Performance (6824E, LAN)

Channels Memory depth WFM/s

8 1M 15.2
4 1M 30.5
2 1M 64.4
1 10M 12.2
1 50M 3.03

5.11 Rigol

Rigol oscilloscopes have subtle differences in SCPI command set, but this is implemented with
quirks handling in the driver rather than needing different drivers for each scope family.

Device Family Driver Notes

DS1100D/E rigol

DS1000Z rigol

MSO5000 rigol
5.11.1 rigol

Typical Performance (MSO5000 series, LAN)

Channels Memory depth WFM /s

4 10K 0.96
4 100K 0.91
4 1M 0.59
4 10M 0.13
1 100M 0.0601
4 256M 0.0568
2 50M 0.0568

5.12 Rohde & Schwarz

There is partial support for RTM3000 (and possibly others, untested) however it appears to have
bitrotted.

TODO (scopehal:59)

5.13. SALEAE 35
5.13 Saleae

TODO (scopehal:16)

5.14 Siglent

A driver for SDS2000X+ is available in the codebase which has been developed according to Siglent
offical documentation (Programming Guide PGO1-E11A). This driver should be functional across the
'next generation’ SDS2000X+, SDS5000X and SDS6000X scopes . It has been primarily developed
using the SDS2000X+. Some older generation scopes are supported as well.

Digital channels are not supported on any scope yet, due to lack of an MSO probe to test with.
Many trigger types are not yet supported.

Device Family Driver Transport Notes

SDS1000X-E series siglent lan Initialises, triggers and downloads waveforms.
More testing needed

SDS2000X-E series siglent lan Initialises, triggers and downloads waveforms.
More testing needed

SDS2000X+ series siglent lan Basic functionality complete.

SDS2000X HD series siglent lan Tested and works well on SDS2354x HD.

SDS5000X series siglent lan Initialises, triggers and downloads waveforms.
More testing needed

SDS6000A series siglent lan Tested and works well on SDS6204A. 10/12

bit models NOT supported, but unavailable
for dev (not sold in western markets).

Typical Performance (SDS2104X+, LAN)

25
2
15
“-L;'\. —1
E 2
P~ 3
1
—1
05
0
10 100 1K 10K 100K ™ 10M

Depth (points/channel)

Figure 5.1: Siglent sample speed for various combinations of depth and channels

36 CHAPTER 5. OSCILLOSCOPE DRIVERS

Channels Memory depth WFM/s

1 5-100K 2.3
2 5-100K 1.6
3 5-100K 1.2
4 5-100K 1

1 10M 0.5
2-4 10M 0.15

These figures were obtained from a SDS2104X+ running firmware version 1.3.7R5. Differ-
ent scopes and software revisions may vary. This series of scopes support sample depths up to
100MPoints, but depths beyond 10MPoints require a different software interface and are likely to
be extremely slow, so have not yet been implemented.

5.15 Teledyne LeCroy / LeCroy

Teledyne LeCroy (and older LeCroy) devices use the same driver, but two different transports for
LAN connections.

While all Teledyne LeCroy / LeCroy devices use almost identical SCPI command sets, Windows
based devices running XStream or MAUI use a custom framing protocol (“vicp") around the SCPI
data while the lower end RTOS based devices use raw SCPI over TCP (“lan").

Please see the table below for details on which configuration to use with your hardware.

Device Family Driver Transport Notes

DDA lecroy vicp Tested on DDA5000A series

HDO lecroy vicp Tested on HDO9000 series

LabMaster lecroy vicp Untested, but should work for 4-channel setups
MDA lecroy vicp Untested, but should work

SDA lecroy vicp Tested on SDA 87i series

T3DSO 777 777 Untested

WaveAce 777 777 Untested

WavelJet 777 777 Untested

WaveMaster lecroy vicp Same hardware as SDA /DDA
WaveRunner lecroy vicp Tested on WaveRunner Xi and 8000 series
WaveSurfer lecroy vicp Tested on WaveSurfer 3000 series

5.15.1 lecroy

This is the primary driver for MAUI based Teledyne LeCroy / LeCroy devices.

This driver has been tested on a wide range of Teledyne LeCroy / LeCroy hardware. It should
be compatible with any Teledyne LeCroy or LeCroy oscilloscope running Windows XP or newer
and the MAUI or XStream software.

5.15. TELEDYNE LECROY / LECROY 37

Typical Performance (HD0O9204, VICP)

Channels Memory depth WFM/s

1 100K >50

1 400K 29 - 35

2 100K 30 - 40

4 100K 17-21

1 2M 9-11

1 10M 22-26

4 1M 5.2-6.5

1 64M 0.41 - 0.42
2 64M 0.21 - 0.23
4 64M 0.12 - 0.13

Typical Performance (WaveRunner 8404M-MS, VICP)

Channels Memory depth WFM /s

1 80K 35 - 45
2 80K 35 - 45
2 800K 16 - 17
2 8M 3.1-32

5.15.2 lecroy fwp

This is a special performance-enhanced extension of the base “lecroy" driver which takes advantage
of the FastWavePort feature of the instrument to gain high speed access to waveform data via
shared memory. Waveforms are pulled from shared memory when a synchronization event fires,
then pushed to the client via a separate TCP socket on port 1862.

On low latency LANS, typical performance increases observed with SDA 8Zi series instruments
are on the order of 2x throughput vs using the base driver downloading waveforms via SCPI. On
higher latency connections such as VPNs, the performance increase is likely to be even higher
because the push-based model eliminates the need for polling (which performs increasingly poorly
as latency increases).

To use this driver, your instrument must have the XDEV software option installed and the
scopehal-fwp-bridge server application running. If the bridge or option are not detected, the driver
falls back to SCPI waveform download and will behave identically to the base “lecroy" driver.

There are some limitations to be aware of with this driver:

e Maxmimum memory depth is limited to no more than 40M samples per channel, regardless
of installed instrument memory. This is an architectural limitation of the FastWavePort API,;
the next generation FastMultiWavePort API eliminates this restriction however scopehal-fwp-
bridge does not yet support it due to poor documentation.

e MSO channels are not supported, because neither Fast WavePort nor FastMultiWavePort pro-
vide shared memory access to digital channel data. There is no known workaround for this
given current instrument APIs.

e A maximum of four analog channels are supported even if the instrument actually has eight.
There are no major technical blockers to fixing this under FastWavePort however no 8-channel
instruments are available to the developers as of this writing, so there is no way to test potential

https://github.com/glscopeclient/scopehal-fwp-bridge

38 CHAPTER 5. OSCILLOSCOPE DRIVERS

fixes. FastMultiWavePort has a limit of four channels per instance, but it may be possible to
instantiate multiple copies of the FastMultiWavePort block to work around this.

e Math functions F9-F12 are used by the FastWavePort blocks and cannot be used for other
math functions.

5.16 Tektronix

This driver is being primarily developed on a MSO64. It supports SCPI over LXI VXI-11 or TCP
sockets.

The hardware supports USBTMC, however waveform download via USBTMC does not work
with libscopehal for unknown reasons.

Device Family Driver Transport Notes

MSO5 series tektronix lan, Ixi

MSO6 series tektronix lan, Ixi

5.16.1 Note regarding “lan" transport on MSO5/6
The default settings for raw SCPI access on the MSOG6 series use a full terminal emulator rather

than raw SCPI commands. To remove the prompts and help text, go to Utility | I/O, then under
the Socket Server panel select protocol “None" rather than the default of “Terminal".

Typical Performance (MSO64, LXI, embedded OS)

Channels Memory depth WFM /s

1 50K 10.3 - 11.4
2 50K 6.7-7.2
4 50K 5.1-5.3
1 500K 8.7-9.5
4 500K 3.8-3.9

5.17 Xilinx

TODO (scopehal:40)

Chapter 6

Power Supply Drivers

NOTE: Power supplies are only supported by ngscopeclient as of this writing (2022-09-24)

6.1 GW Instek

Device Family Driver Transport Notes

GPD-X303S series gwinstek gpdx303s uart 9600 Baud default. Tested with
GPD-3303S. No support for tracking
modes yet.

6.1.1 gwinstek gpdx303s

Supported models should include GPD-2303S, GPD-3303S, GPD-4303S, and GPD-3303D.

6.2 Rohde & Schwarz

Device Family Driver Transport Notes

HMC804x series 1rs_hmc804x uart, usbtmc, lan No support for tracking modes yet.

6.2.1 rs hmc804x

39

40

CHAPTER 6. POWER SUPPLY DRIVERS

Chapter 7

Main Window

The main window of glscopeclient consists of the menu bar and tool bar at top and a status bar at
the bottom. All remaining space is occupied by one or more waveform groups.

7.1 Menu

7.1.1 File

This menu contains commands for saving and loading waveform and session files, and managing
instrument connections.

e Connect
Displays the “connect to instrument" dialog.

e Recent Instruments
Contains a list of up to ten recently used instruments.

e Open Online...
Loads a .scopesession file and reconnects to the instrument(s) to continue existing work.
Settings from the saved session will be applied and overwrite the current channel and timebase
configuration of the instrument, if different.

e Open Offline...
Loads a .scopesession file in offline mode, allowing you to work with saved waveform data
without connecting to the instrument(s) the data was captured from.

e Save
Saves Ul configuration and waveform data (including history) to a session file for future use.

A session consists of a YAML file called filename.scopesession containing instrument and Ul
configuration, as well as a directory called filename data which contains waveform metadata
and sample values for all enabled instrument channels.

Note that both the .scopesession and the data directory must be copied if moving the session
to a new location in order to preserve waveform data. If you only wish to restore the filter
graph and Ul configuration without waveform content, the data directory is not required.

e Save As...
Saves the session to a new file, rather than the current one.

41

42

e Export

CHAPTER 7. MAIN WINDOW

Saves some or all of the data in the active session to a file in another format.

For more detail see the Export Formats chapter.

e Close

Close the current session without exiting glscopeclient.

e Quit

Exits the application

7.1.2 Setup

e Instrument Sync

Synchronizes two or more instruments under a single glscopeclient instance. TODO: more
complete documentation

e Trigger

Configures trigger settings

e Halt Conditions

Makes glscopeclient pause when a waveform meeting certain conditions is acquired

e Preferences

Opens the preferences dialog

7.1.3 View

This menu allows display settings to be configured. As of now, the only option is selection of the
color palette for eye patterns.

Name

Notes

CRT

Grayscale
Ironbow

KRain

Rainbow

Reverse Rainbow

Viridis

I |
=
=}
=
n

Similar to a major vendor’s color scheme.
Common monochrome palette.

Common "hot metal" palette.

Similar to a major vendor’s color scheme.
Common HSV rainbow palette.
Common HSV rainbow palette.

Perceptually uniform palette from mat-
plotlib.

7.1.4 Add

This menu allows new waveforms to be added to the display

e Channels

Lists all channels on the currently connected instrument(s)

7.2. TOOLBAR 43

e Import
Allows waveforms to be loaded from external data files in various interchange formats

e Generate
Allows synthetic waveforms to be generated for testing, simulation, and channel design appli-
cations

7.1.5 Window

This menu provides access to various utility windows.

e Filter Graph
Opens the filter graph editor (see Chapter 14)

e Analyzer
Opens protocol analyzer views which have been closed

e Multimeter
Displays measurements from digital multimeters attached to the session

7.1.6 Help

About: Displays program version and copyright information

7.2 Toolbar

The toolbar contains buttons and controls for the most frequently used actions.

Opacity

Figure 7.1: glscopeclient toolbar

7.2.1 Capture buttons

The capture button group (Fig. 7.2) contains three buttons. From left to right these are “arm

n

normal trigger", “arm one-shot trigger" and “stop trigger".

Note that the “normal" trigger mode still uses one-shot capture internally so that all waveform
data can be downloaded before the next trigger event.

Figure 7.2: Capture control buttons

7.2.2 History

The history button (Fig. 7.3) toggles display of the waveform history view.

44 CHAPTER 7. MAIN WINDOW

Figure 7.3: History button

7.2.3 Refresh Settings

In order to improve performance, glscopeclient caches many instrument settings locally rather than
constantly querying the instrument for the current timebase, trigger configuration, etc. If settings
are changed via the instrument front panel while glscopeclient is running, glscopeclient may not be
aware of these changes.

The Refresh Settings button (Fig. 7.4) clears all cached instrument configuration and updates
glscopeclient with the current instrument settings. For most “headless" instruments, such as Pico
Technology devices, this button has no effect.

Figure 7.4: Refresh Settings button

7.2.4 Clear Sweeps

The Clear Sweeps button (Fig. 7.5) clears all persistence waveforms, accumulated eye pattern /
waterfall data, and statistics. Waveforms saved in history are not deleted.

Figure 7.5: Clear Sweeps button

7.2.5 Fullscreen

The Fullscreen button (Fig. 7.6) switches glscopeclient between normal and full-screen mode.

7.2.6 Opacity slider

The opacity slider (Fig. 7.7) controls the alpha/opacity used to display intensity-graded waveforms.
Higher opacity values lead to better display of sparse waveforms (compare the crisp lines of Fig. 7.8
to the barely visible trace in Fig. 7.9) but can lead to a washed-out appearance if too many sample
points are shoved into a small area.

Opacity

Figure 7.7: Trace opacity slider

7.2. TOOLBAR 45

Figure 7.6: Fullscreen button

T e

Figure 7.8: Sparse waveform at a high zoom level

Figure 7.9: Dim waveform showing difficulty of seeing waveform at low opacity

For example, the DVI waveform in Fig. 7.10 looks like a solid white blob with a vaguely visible
outline. No fine detail can be observed other than the increased over/undershoot and random-
looking edges on the scanlines, compared to the flat appearance of the blanking period between
scanlines and at the end of the frame.

When the opacity is reduced in this example, many more nuances of the signal become apparent.
The high/low voltage levels of the signal compared to the transitions between them are obvious,
and the H/V sync pulses within the blanking period show up as a slightly darker region.

WWMWHWW

- N W————

Figure 7.10: Intensity-graded waveform showing washed-out appearance at high opacity

Figure 7.11: Intensity-graded waveform at lower opacity level

As of this writing, the opacity setting is global for the entire application. Should this be changed
to per waveform group? If so, how should the group be selected and should there still be an option
to make changes globally?

46

CHAPTER 7. MAIN WINDOW

Chapter 8

Waveform Groups

A waveform group is a collection of one or more waveforms stacked vertically under a common
timeline. All waveforms within a group share the same timeline and vertical cursor(s).

When glscopeclient starts up, by default all channels on the attached instrument(s) are displayed
in a single waveform group (Figure 8.1).

Oscilloscope: hdo9 (LECROY HDO9204, serial LCRY4403N30190) o B

0.000ps '500.000ns '1.000ps '1500ps '2000ps '2500ps '3000ps '3soops laooops lasoops 'sooops 'ssoops leooops lesoops '7.000 s

148.788 mV
98.788 mV

€2:200kS
10 GS/s

C4 : 200 kS
10 GS/s

Figure 8.1: Top level glscopeclient window with a single waveform group

As you add protocol decodes or look at different parts of a waveform, it may be helpful to create
additional waveform groups. Typical reasons for creating additional groups include:

e Zooming into one set of signals to see detail on short time scales while maintaining a high
level overview of others

e Viewing signals with incompatible horizontal units. For example, a FFT has horizontal units
of frequency while an analog waveform has horizontal units of time. Eye patterns also have
horizontal units of time, but are always displayed as two Uls wide and cannot be zoomed.

47

48 CHAPTER 8. WAVEFORM GROUPS
8.1 Managing Groups

Additional groups may be created by right clicking a waveform and selecting [Move|Copy] waveform
to / Insert new group at [right|bottom] from the context menu. This will split the current
group’s area in half horizontally or vertically, with the selected waveform moved or copied to the
newly added group and all other waveforms in the original group.

Waveforms may be also be moved within, or between, groups by clicking the channel information
box and dragging it. A yellow insertion bar will appear when dragging, showing the location the
waveform will be inserted in.

If a waveform is dragged to the very bottom or right side of a waveform group, the destination
group will be split vertically or horizontally and the new waveform will be inserted below or to the
right of the destination group. The insertion bar turns orange when dragging near the edge of a
group, to indicate that a split will take place.

Dividers between waveform groups may be dragged with the left mouse button. Any group may
be subdivided again, to create arbitrarily complex tiles of waveforms. Figure 8.2 shows a two-level
hierarchy created by moving channel 2 to a new group at right, then moving channel 4 to a new
group below that one.

Oscilloscope: hde9 (LECROY HDO9204, serial LCRY4403N30190) o E

File Setup View Add

> » m & = F WK Opacity

WaveformGroupl —————————________________________________ Waveform Group 2

0.000 ps 2.500

"
mv

my - :

4 mV B
mv
. "

[c2:200ks v

[c1-200ks)) e
0 n G

5.000 ps 7.500 ps | [0.000 ps '25.000 ns '50.000 ns 75.000 ns 100.000 ns 125.000 ns

[10 G5/

0.000 ps 125.000 ns 250.000 ns

1.749 v
l1.249 V
748.921 mV

248.921 mv

Figure 8.2: Top level glscopeclient window with several waveform groups separated by splitters
Protocol decode overlays may be reordered by dragging the channel information box with the

mouse, however they cannot currently be moved to another waveform or group.

New waveform groups are given an automatically generated name when created, for example
“Waveform Group 2". This name may be changed by double clicking the group name and entering
a new name in the dialog.

Chapter 9

Timeline

The timeline is displayed at the top of each waveform group and shows the X axis scale for the group.
The timeline (and all accompanying waveform views in the group) may be zoomed by scrolling with
the mouse wheel, or panned by dragging with the left mouse button.

Unlike classical oscilloscope user interfaces, there is no relationship between the timeline scale or
position and the duration of the acquisition. It is possible to zoom or scroll beyond the end of the
acquisition (displaying empty background with no signal) or have a deep capture in which nearly
all acquired data is offscreen.

Note that the timeline may occasionally show units other than time. For example, an “eye

width" measurement has X axis units of voltage and Y axis units of time, and a spectrum analyzer
channel has X axis units of frequency.

Figure 9.1: The timeline

The position of the trigger event is marked by a downward-pointing arrow on the timeline, color
coded to match the channel selected as the primary trigger source. The trigger arrow cannot be
interacted with currently, but in the future (scopehal-apps:173) it will be draggable to adjust the
trigger position.

Double-clicking on the timeline brings up the timebase properties dialog (Fig. 9.2), which
allows the sample rate and memory depth to be configured. If multiple instruments are connected,
a separate tab appears in the dialog for each instrument.

Timebase Properties =

ime Domain sample Rate
Frequency Domain
Memory Depth | 50 kS

Channel Combining I

‘ 0K H Cancel |

Figure 9.2: Timebase properties (time domain)

If the instrument is a spectrum analyzer, or has frequency-domain analysis capability (such as
the Tektronix MSO5 and MSO6 oscilloscopes), the timebase properties dialog will have a second

49

50 CHAPTER 9. TIMELINE

page (Fig. 9.3) for setting the span and resolution bandwidth for frequency-domain channels. Center
frequency is often a per-channel adjustment on multichannel instruments, so it is configured from
the channel properties dialog rather than timebase properties.

Timebase Properties =

msob

ime Domain Span |EDD MHz

" RBW |50 kHz

0K H Cancel |

Figure 9.3: Timebase properties (frequency domain)

Chapter 10

Triggers

10.1 Trigger Properties

The Setup / Trigger menu opens the trigger properties dialog (Fig. 10.1).

The Trigger Type box allows the type of trigger to be chosen. The list of available triggers
depends on the instrument model and installed software options.

The Trigger Offset field specifies the time from the start of the waveform to the trigger point.
Positive values move the trigger later into the waveform, negative values introduce a delay between
the trigger and the start of the waveform. !

Trigger properties B
Scope mso6 (MSO64, serial C013151)
Trigger Type ‘ Edge
Trigger Offset | 1ps

din ‘CHZ

Edge ‘ Rising

Level [125.5248 mv

Figure 10.1: Trigger properties dialog

The remaining settings in the trigger properties dialog depend on the specific trigger type chosen.

10.2 Serial Pattern Triggers

All serial pattern triggers take one or two pattern fields, a radix, and a condition.

For conditions like “between" or “not between" both patterns are used, and no wildcards are
allowed. For other conditions, only the first pattern is used.

Patterns may be specified as ASCII text, hex, or binary. “Don’t care" nibbles/bits may be
specified in hex/binary patterns as “X", for example “3fx8" or “1100010xxx1".

IThis is a different convention than most oscilloscopes, which typically measure the trigger position from the
midpoint of the waveform. Since glscopeclient decouples the acquisition length from the Ul zoom setting, measuring
from the midpoint makes little sense as there are no obvious visual cues to the midpoint’s location.

51

52 CHAPTER 10. TRIGGERS

10.3 Dropout

Triggers when a signal stops toggling for a specified amount of time.

10.3.1 Inputs

Signal name Type Description

din Analog or digital Input signal

10.3.2 Parameters

Parameter name Type Description

Edge Enum Specifies the polarity of edge to look for (rising or falling)

Dropout Time Int Dropout time needed to trigger

Level Float Voltage threshold

Reset Mode Enum Specifies whether to reset the timer on the opposite edge
10.4 Edge

Triggers on edges in the signal.

Edge types ‘“rising" and “falling" are self-explanatory. “Any" triggers on either rising or falling
edges. “Alternating" is a unique trigger mode only found on certain Agilent/Keysight oscilloscopes,
which alternates each waveform between rising and falling edge triggers.

10.4.1 Inputs

Signal name Type Description

din Analog or digital Input signal

10.4.2 Parameters

Parameter name Type Description
Edge Enum Specifies the polarity of edge to look for
Level Float Voltage threshold

10.5 Glitch

TODO: This is supported on at least LeCroy hardware, but it’s not clear how it differs from pulse
width.

10.6 Pulse Width

Triggers when a high or low pulse meeting specified width criteria is seen.

Signal name Type Description

din Analog or digital Input signal

10.7. RUNT

10.6.1 Parameters

Parameter name Type

Description

Condition Enum Match condition (greater, less, between, or not between)
Edge Enum Specifies the polarity of edge to look for
Level Float Voltage threshold
Lower Bound Int Lower width threshold
Upper Bound Int Upper width threshold
10.7 Runt

Triggers when a pulse of specified width crosses one threshold, but not a second.

93

Signal name Type

Description

din Analog

10.7.1 Parameters

Input signal

Parameter name Type

Description

Condition Enum Match condition (greater, less, between, or not between)
Edge Slope Enum Specifies the polarity of edge to look for

Lower Interval Int Lower width threshold

Lower Level Float Lower voltage threshold

Upper Interval Int Upper width threshold

Upper Level Float Upper voltage threshold

10.8 Slew Rate

Triggers when an edge is faster or slower than a specified rate.

Signal name Type

Description

din Analog

10.8.1 Parameters

Input signal

Parameter name Type

Description

Condition Enum Match condition (greater, less, between, or not between)
Edge Slope Enum Specifies the polarity of edge to look for
Lower Interval Int Lower width threshold
Lower Level Float Lower voltage threshold
Upper Interval Int Upper width threshold
Upper Level Float Upper voltage threshold
10.9 UART

Triggers when a byte or byte sequence is seen on a UART.

54

10.9.1 Inputs

CHAPTER 10.

TRIGGERS

Signal name Type Description
din Analog or digital Input signal
10.9.2 Parameters
Parameter name Type Description
Bit Rate Int Baud rate
Condition Enum Match condition
Level Float Voltage threshold
Parity Mode Enum Odd, even, or no parity
Pattern String First match pattern
Pattern 2 String Second match pattern
Polarity Enum Idle high (normal UART) or idle low (RS232)
Radix Enum Radix for the patterns
Stop Bits Float =~ Number of stop bits
Trigger Type Enum Match data pattern or parity error

10.10 Window

Triggers when a signal goes above or below specified thresholds.

The available configuration settings for this trigger vary from instrument to instrument.

Signal name

Type

Description

din

Analog

10.10.1 Parameters

Input signal

Parameter name Type Description

Condition Enum Specifies whether to trigger on entry or exit from the window,
and whether to trigger immediately or after a time limit.

Edge Enum Specifies which edge of the window to trigger on

Lower Level Float Lower voltage threshold

Upper Level Float Upper voltage threshold

Chapter 11

Waveform Views

A waveform view is a 2D graph of a signal or protocol decode within a waveform group.

11.1 Navigation

Scrolling with the mouse wheel adjusts the horizontal scale of the current waveform group, zooming
in or out centered on the position of the mouse cursor.

Pressing SHIFT while scrolling moves the view left and right without adjusting zoom. If your
mouse has a horizontal scroll feature, this may also be used to pan without zooming.

Pressing the middle mouse button auto-scales the active waveform group so that the entire
waveform is visible.

11.2 Plot Area

The plot area shows the waveform being displayed. The background has a subtle gradient from
light at top to dark at bottom, in order to visually separate adjacent waveform view within the
same group.

The horizontal grid lines line up with the voltage scale markings on the Y axis. If the plot area
includes Y=0, the grid line for zero is slightly brighter.

Figure 11.1: Waveform plot area

The waveform is drawn as a semi-transparent line so that when zoomed out, the density of
voltage at various points in the graph may be seen as lighter or darker areas. This is referred to as
“intensity grading".

95

56 CHAPTER 11. WAVEFORM VIEWS

Figure 11.2: Intensity-graded waveform

11.3 Y Axis Scale

Each waveform view has its own Y axis scale, which is locked to the ADC range of the instrument.

Channel gain may be configured by scrolling with the mouse wheel, and offset may be adjusted
by dragging with the left mouse button. If the view is displaying the output of a filter block,
you may use the middle mouse button to auto-scale the vertical axis to the range of the current
waveform. The auto-scale feature is not available for physical instrument inputs.

If a left-pointing arrow (as seen in Fig. 11.3) is visible, the current channel is selected as a
trigger source. Click on the arrow and drag up or down to select the trigger level. Some trigger
types, such as window triggers, have two arrows for upper and lower levels.

3.000 V

2.008 V

-2.6000 V

-3.000 V

Figure 11.3: Y axis of a waveform view showing trigger arrow

11.4 Channel Information Box

The channel information box is displayed in the lower left corner of each waveform view. It contains
summary information about the channel. Currently this is the display name of the channel, the
sample rate, and the record length of the acquisition. Other information, such as probe coupling,
may be displayed there in the future.

c1:1Ms |

20 G5/s

Figure 11.4: Channel information box

The information box may be dragged with the left mouse button to move the entire waveform

view to a new location.

Double-clicking the information box opens the channel properties dialog (Fig. 11.5). This dialog
allows changing of the channel’s nickname or color. The “hardware name" of the channel is also
displayed, so that a renamed channel can be easily traced back to a physical instrument input.

Depending on the particular instrument in question, other settings may be displayed here, such
as fine deskew, attenuation, polarity inversion, and bandwidth limiting. An input mux selector is

11.5. CURSORS 57

shown if the scope has more than one input per channel (such as the Teledyne LeCroy SDA and
WaveMaster series).

The channel properties dialog also allows setting threshold and hysteresis for digital channels,
and ADC configuration for scopes that have variable analog resolution (such as the Teledyne LeCroy
HDO9000 or Pico Technology 6000E series). These settings are listed under channel properties since
some instruments support per-channel adjustment of them, however it it is important to note that
these settings apply to multiple channels (a bank or even the entire instrument) in some cases. A list
box under these settings shows the list of other channels, if any, that share the same configuration.

- Channel properties (N E S
Scope sda (SDABL6EZI, serial LCRYD425N48460)

Channel C4 (passiv be connected)

Display Name |Cd.

Waveform Color] |
Deskew 0fs
Attenuation 1.000000

BW Limit

Figure 11.5: Channel properties dialog

11.5 Cursors

11.5.1 Vertical Cursors

To add a vertical cursor (Fig. 11.6), right click on the waveform and select Cursor | Vertical
(single) or Cursor | Vertical (dual) as appropriate.

Length: 1D: 0x9cb5

Figure 11.6: Vertical cursor

To place a single cursor, click on the waveform at the desired location. To place double cursors,
click at the starting location to place the first cursor then drag to the ending location and release
the mouse to place the second cursor. Once placed, either cursor can be moved by clicking on it
and dragging to the new location.

58 CHAPTER 11. WAVEFORM VIEWS

Cursors will snap to transitions in digital signals or protocol decode overlays if the mouse is
within a few pixels of the location. No snapping is applied when the mouse is over an analog
waveform.

In the timeline each cursor will display its X-axis position. If both cursors are active, the delta
between them is shown. If the X axis uses time units, the frequency with period equal to the cursor
spacing is also shown.

At the bottom of each waveform area, the Y-axis value of the signal where it crosses the cursor
is shown. In FFT / spectrum analyzer plots, the integrated in-band power between both cursors is
also shown.

If a protocol analyzer view (Chap. 13) is active, moving a single cursor over a packet will scroll
to and highlight that packet.

11.5.2 Horizontal Cursors

To add a horizontal cursor (Fig. 11.7), right click on the waveform and select Cursor | Horizontal
(single) or Cursor | Horizontal (dual) as appropriate.

0cb500004001 b8e20a0206fc0a02 99.7129 mV
b5 00 00 40 01 b8 e2 Da

i v TV e
cb5 Offse... (Checksu... .

“39.1301 mv

Figure 11.7: Horizontal cursor

To place a single cursor, click on the waveform at the desired location. To place double cursors,
click at the starting location to place the first cursor then drag to the ending location and release
the mouse to place the second cursor. Once placed, either cursor can be moved by clicking on it
and dragging to the new location.

At the right side of the plot, each cursor will display its Y-axis location. If both cursors are
active, the delta between them is also shown.

All waveform areas in a group share the same Y axis cursor positions.

11.6. OVERLAYS 59
11.5.3 Markers

11.6 Overlays

Waveforms may have additional information overlaid on top of them, such as protocol decodes. Each
overlay has its own information box, which may be double-clicked to open the properties dialog and

configure it just like any other channel.

Fig. 11.8 shows an example of an analog waveform with five overlays: a CDR PLL, thresholding,
and decodes of the 64/66b line code, the 10Gbase-R Ethernet framing, and IPv4 packet headers.

406 ns

04 04
Length: 1028

Figure 11.8: Waveform showing two digital overlays and a three decode overlays

Overlays can be deleted by means of the right-click context menu. Dragging the information
box with the left mouse button allows overlays to be reordered, however they cannot currently be
moved to another waveform view.

11.7 Statistics

Statistics (Fig. 11.9) may be shown for any waveform by checking the “statistics" box in the context
menu. The default statistics are minimum, average, and maximum although more may be added in

the future.

Maximum 94.8750 mV

Average -0.9472 mV

Minimum -108.6312 mV

Figure 11.9: Statistics for an analog waveform

60

CHAPTER 11.

WAVEFORM VIEWS

Chapter 12
History View

glscopeclient has the ability to save every waveform during a session in memory, allowing you to go
back in time and see previous state of the system being debugged. Clicking on a timestamp in the
history view pauses acquisition and loads the historical waveform data for analysis.

By default, the history view (Fig. 12.1) is not displayed and history is limited to ten waveforms.
If the history view is closed, history continues to be captured up to the configured maximum history
depth.

History: ps6 o X

Max waveforms| 10

Date

-
-
=

9450

B
v
[
[
[
.
v

. 3873703 this is ok
B 2022-086-15 15:81:44.5422582626
 2022-06-15 19:29:03.0676295757 glitch here
B 2022-06-15 19:29:03.5292198657

10 WFM /36 MB

Figure 12.1: Waveform history view

The “max waveforms" box allows the depth of the history to be configured. It defaults to 10
but can be set to any positive integer value. Older waveforms beyond the history limit are deleted
as new waveforms are acquired.

The status bar at the bottom of the history view displays the total number of waveforms in the
history, as well as an estimate of the amount of RAM used by the history.

12.1 Pinning

Interesting waveforms may be “pinned" in the history by checking the box in the “pin" column of
the history view. Pinned waveforms are guaranteed to remain in the history buffer even when new
waveforms arrive; only unpinned waveforms are eligible for automatic deletion to make space for
incoming data.

61

62 CHAPTER 12. HISTORY VIEW

12.2 Labeling

Arbitrary text names may be assigned to a waveform by double-clicking the corresponding cell in
the “label" column. Waveforms with a label are automatically pinned, since assigning a label implies
the waveform is important.

12.3 Estimating Waveform Memory Usage

When selecting a maximum depth for the history, it is important to pick a reasonable limit to avoid
running out of RAM! glscopeclient will happily fill tens or hundreds of gigabytes of memory with
deep waveforms if given a chance. Memory usage of waveform data can be roughly estimated as 16
+ sizeof(sample type) bytes per point, since each sample contains a 64-bit timestamp and duration
plus the sample data.

For example, an analog sample takes 20 bytes of RAM (16 of time plus a 32-bit floating point
voltage measurement) per sample. Thus, a 1M point analog waveform takes approximately 20 MB
of RAM per channel, or 80 MB per capture on a four-channel oscilloscope with all channels enabled.

On the larger side, a 10M point four channel capture would use 800 MB and a 64M point deep-
memory capture would use 5 GB. A deep history setting, such as 100 waveforms, is thus wildly
inappropriate for such deep captures! A future software release may support spilling waveform data
to a temporary directory on disk, permitting effectively unlimited history depth given sufficient disk
space.

Digital waveforms use one byte per sample for the actual measurement, so 17 MB per channel for
a 1M point waveform. Most logic analyzer or MSO drivers for libscopehal will perform automatic
de-duplication when a waveform goes several clock cycles with no toggles, so the actual memory
usage is likely to be significantly less than this.

Filter memory usage varies depending on the specific filter in question, however it is typically
not a large contributor to the overall glscopeclient RAM footprint when using history mode because
filters are evaluated dynamically each time a waveform is pulled from history rather than having
output cached for every historical waveform. Thus, at most one copy of each filter’s output is present
in memory regardless of history depth.

Chapter 13

Protocol Analyzer View

Some filters for decoding packet-oriented data provide an alternate means of visualizing the decoded
traffic.

The protocol analyzer view (Fig. 13.1) displays each packet in the history as a row in a list
view. The first column is always the timestamp of the packet; remaining columns vary depending
on the particular filter in question.

Protocol Analyzer: SDCmd{CMD, CLK) [=

Apply

Time \ Code Command Info

b 20:44:41.5939837670 Command CMD16 SET_BLOCKLEN Block size = 512

» 20:44:41.5939941550 Command ACMDG6 SET_BUS_WIDTH x4

v 20:44:41.5940144390 Command ACMD42 SET_CLR_CARD DETECT CD/DAT3 pullup disable
20:44:41.5940144390 Command CMD55 APP_CMD e6240000
20:44:41.5¢ E CMD55 APP_CMD READY_FOR \ APP_CMD tran

20:44:41.5940239390 Command ACMD42 SET_CLR_CARD_DETECT CD/DAT3 pullup disable
2 :41.59 5510 Reply)42 L UNLO READY_ FOR_DATA APP_CMD tran

v 20:44:41.5940347230 Command CMD17 READ_SINGLE_BLOCK 0eeee0e8
20:44:41.5948347230 Command CMD17 READ_SINGLE BLOCK oeeeeees
2 4:41.59403 90 Reply CMD17 READ_SING] A FOR_DATA
» 20:44:41.5958217070 Command CMD17 READ_SINGLE BLOCK eeee2ee08

i29:44:41.59543182?9 Command CMD17 READ SINGLE BLOCK 06004000
|

Figure 13.1: Protocol analyzer view

If closed, the protocol analyzer view may be reopened by selecting the protocol of interest from
the Window / Analyzer menu.

Many filters group related packets (request and reply, escape sequences, polling loops, etc) under
a single heading to enable easier navigation of large datasets. The tree expansion button at the left
of the timestamp column may be used to expand the event into its constituent packets.

13.1 Cursor Interaction

Clicking on a packet pauses acquisition, loads the relevant waveform from history if the packet is
not in the current waveform, and scrolls the waveform view containing the protocol decode to show

63

64 CHAPTER 13. PROTOCOL ANALYZER VIEW

the packet. If the packet fits entirely within the view at the current zoom setting it is centered in
the view; otherwise the beginning of the packet is placed near the left edge of the viewport and the
packet continues off the right edge.

If a vertical cursor (Sec. 11.5) is active in the waveform area displaying the protocol decode,
clicking on a packet in the analyzer view moves the cursor to the start of the packet. Placing the
cursor on a packet highlights the corresponding row in the protocol analyzer.

13.2 Packet Coloring

Protocol packets are color coded according to the high-level function of the packet. The colors are
configurable in preferences; defaults are shown in the table below.

Color name Use case Default Color
Command Executing commands 600050
Control Changing configuration #808000
Data read Reading data #336699

Data write Writing data #339966
Error Malformed, bad checksum ff0000
Status Status updates, flow control REEESNNE]

13.3 Filtering

To ease analysis of large packet datasets, filters may be applied to the analyzer view by typing a
filter expression into the filter bar at the top of the window (Fig. 13.2), then pressing the “Apply"
button. A filter can be removed by deleting the contents of the filter bar and pressing “Apply".

Protocol Analyzer: MDIO(Thr MDIO), Thr MDC)) FE" X

e Info
.3868642944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
.6081198944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
.6090274944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
.6729430944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
.7129402944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
. 7529466944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
.7929550944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
.8329574944 Status: Down ExtStatus ExtCaps PreambleSupp AnegCapable
.B729654944 Status: Up AnegDone ExtStatus ExtCaps PreambleSupp Aneg
.9129690944 Status: Up AnegDone ExtStatus ExtCaps PreambleSupp Aneg

Figure 13.2: Filtering protocol analyzer view

13.3. FILTERING 65

The basic format of a filter is (expression) (operator) (expression).

13.3.1 Expressions

An expression can be:

e A quoted string

e A decimal number

A field identifier (such as PHY or Reg). Identifiers are case sensitive.

datal|x|, where x is an arbitrary numeric expression

A filter expression in parentheses. This expression must evaluate to boolean true or false. The
unary ! operator can be used to negate a parenthetical expression.

13.3.2 Operators

An operator can be:

e ==: returns true if the left and right expression are equal
e !=: returns true if the left and right expression are not equal
e | |: returns true if at least one of the left or right expression is true

e 8&: returns true if both the left and right expression is true
e startswith: returns true if the right expression is a string which starts with the left expression

e contains: returns true if the right expression is a string which contains the left expression

13.3.3 Examples of filters

1 Op == "Read”
2 Reg == "of"
3 (Clause == 22) && (Info startswith "Basic Status")

66

CHAPTER 13. PROTOCOL ANALYZER VIEW

Chapter 14

Filter Graph Editor

The filter graph editor allows complex signal processing pipelines to be developed in a graphical
fashion.

It may be accessed from the Window / Filter Graph menu item.

The leftmost column shows all of the input channels which may be used as data sources for
the filter graph. Filter nodes are automatically placed in columns such that data flows from left to
right, with inputs at the left and outputs at the right of each node.

Nodes may be dragged vertically within their column by using the left mouse button, however
the horizontal position of each node is fixed.

To make a connection, click on the source node’s output and then on the destination node’s
input. To cancel an in-progress connection, simply click anywhere outside a node.

Filter Graph Editor o

Emphasis Removal Clock Jitter (TIE)
Channel: ata 5 Gbps S 2 Clock | Skip Start: 75 s |data data] |data
Coupling: E - 6dB Threshold: = Goden Threshold: omv —————
Attenuation: 2.500000x De-emphasis ate
Range
offset:

omv data
Center
Both

Saturation Level: 1
Vertical Range: 250 mv
Vertical Scale Mode: Auto

sis: omv |data data| Display Format: Dotted (K285 D21.5) data.
: my
3

Clock Recovery (PLL) din| Center Voltage: omv data PCle Gen 1/2 Logicall

. Clock Alignment: Center
IN | Symbol rate: iz clk < n
S Clock Edge: Both data data
Gate
Saturation Level: 1
Vertical Range: 250 mv.
Vertical Scale Mode: Auto

logical
data Display Format: Dotted (K28.5 D21.5) data—— | data—
3

IR R PCle Data Link
Channel: D2 data 8b/10b (1BM) ==

Channel: data

c3
Coupling: DC s00
2.134125x Clock Jitter (TIE)
: 1

omv Clock | Skip Start: 75ns (data—— data| [data
" Threshold: omv

IN | Symbol rate: 5GHz data.
Threshold: mv omv data
El - Clock Alignm Center
Both

ask:
Saturation Level: 1
Vertical Range: 250 mv
Vertical Scale Mode: Auto

Channel: D5 |data

Channel: D6 data

Figure 14.1: Filter graph editor view

The title bar of each node in the graph is color coded to match the channel’s color in the

67

68 CHAPTER 14. FILTER GRAPH EDITOR

waveform view.

Input and output ports are color coded according to the type of data. The colors are configurable
under the Appearance / Filter Graph preference category; the default assignment is dark blue for
analog, purple for digital, and olive for protocol decodes and other non-primitive types.

Chapter 15

Filters

15.1 Introduction

15.1.1 Key Concepts

glscopeclient and libscopehal are based on a “filter graph" architecture internally. The filter graph
is a directed acyclic graph with a set of source nodes (waveforms captured from hardware, loaded
from a saved session, or generated numerically) and sink nodes (waveform views, protocol analyzer
views, and statistics) connected by edges representing data flow.

A filter is simply an intermediate node in the graph, which takes input from zero or more
waveform nodes and outputs a waveform which may be displayed, used as input to other filters,
or both. A waveform is a series of data points which may represent voltages, digital samples, or
arbitrarily complex protocol data structures.

As a result, there is no internal distinction between math functions, measurements, and protocol
decodes, and it is possible to chain them arbitrarily. Consider the following example:

e Two analog waveforms representing serial data and clock are acquired

e Each analog waveform is thresholded, producing a digital waveform

The two digital waveforms are decoded as I?C, producing a series of packets

The I?C packets are decoded as writes to a serial DAC, producing an analog waveform
e A moving average filter is applied to the analog waveform

e A measurement filter finds the instantaneous frequency of each cycle of the DAC output

In this document we use the term “filter" consistently to avoid ambiguity.

15.1.2 Conventions

A filter can take arbitrarily many inputs (vector inputs), arbitrarily many parameters (scalar inputs),
and outputs a signal (vector output).

If the output signal is a multi-field type (as opposed to a single scalar, e.g. voltage, at each
sample) the “Output Signal" section will include a table describing how various types of output data
are displayed. Printf-style format codes maybe used for clarity. For example, “%02x" means data
is formatted as hexadecimal bytes with leading zeroes.

69

70

CHAPTER 15. FILTERS

All filters with complex output use a standardized set of colors to display various types of data

fields in a consistent manner.

preferences category.

These colors are configurable under the Appearance / Decodes

Color name

Use case

Default Color

Address

Memory addresses

Checksum Bad

Incorrect CRC/checksum

Checksum OK

Valid CRC/checksum

Control Miscellaneous control data
Data User data

Error Malformed /unreadable data
Idle Inter-frame gaps

Preamble Preamble/sync words

00
££10000

#c000a0

15.2. 128B/130B 71

15.2 128b/130b

Decodes the 128b/130b line code used by PCle gen 3/4/5. Data fields are descrambled but no
further decoding is performed.

72 CHAPTER 15. FILTERS

15.3 64b/66b

Decodes the 64/66b line code used by 10Gbase-R and other serial protocols, as originally specified
in IEEE 802.3 clause 49.2.

64b /66D is a serial line code which divides transmitted data into 64-bit blocks and scrambles
them with a LFSR, then appends a 2-bit type field (which is not scrambled) to each block for
synchronization. Block synchronization depends on always having an edge in the type field so types
2'b00 and 2’b11 are disallowed.

Note that this filter only performs block alignment and descrambling. No decoding is applied to
the 64-bit blocks, as different upper-layer protocols assign different meaning to them. In 10Gbase-R,
type 2'b01 denotes “64 bits of upper layer data" and type 2’b10 denotes “8-bit type field and 56 bits
of data whose meaning depends on the type", however this is not universal.

640 ns 645 ns 650 ns 655 ns 660 ns 665 ns 670 ns 675 ns. 680 ns 685 ns

C3))/{ 1e00000.. 1e00000000000000 ¥ 1e00000000000000 * 3300000000555555 ¥ 555555d5482ae325 / 496790e2bad8167d X 080045000054c0a7) 40003f015b940a02 X 05070a0206630800

Figure 15.1: Example 64b/66b decode

15.3.1 Inputs

Signal name Type Description
data 1-bit digital ~Serial 8b/10b data line
clk 1-bit digital DDR bit clock, typically generated by use of the Clock Recov-

ery (PLL) filter on the input data.

15.3.2 Parameters

This filter takes no parameters.

15.3.3 Output Signal

The 64B/66B filter outputs a time series of 64B/66B sample objects. These consist of a control /data
flag and a 64-bit data block.

Type Description Color Format

Control Block with type 2’b10 Control D

Data Block with type 2'b01 Data %016x

Error Block with type 2’b00 or 2’b11 ENEIeE %016x

15.4. 8B/10B (IBM) 73
15.4 8B/10B (IBM)

Decodes the standard 8b/10b line code used by SGMII, 1000base-X, DisplayPort, JESD204, PCle
gen 1/2) SATA, USB 3.0, and many other common serial protocols.

8b/10b is a dictionary based code which converts each byte of message data to a ten-bit code.
In order to maintain DC balance and limit run length to a maximum of five identical bits in a row,
all legal codes have one of:

e One legal coding, with exactly five zero bits

e Two legal codings, one with four zero bits and one with six

The transmitter maintains a “running disparity" counter and chooses the appropriate coding for
each symbol to ensure DC balance. There are twelve legal codes which are not needed for encoding
data values; these are used to encode frame boundaries, idle/alignment sequences, and other control
information.

|
D5.6- D11.0+ X K29.7+ D6.5+ J

Figure 15.2: Example 8b/10b decode

15.4.1 Inputs

Signal name Type Description
data 1-bit digital ~Serial 8b/10b data line
clk 1-bit digital DDR bit clock, typically generated by use of the Clock Recov-

ery (PLL) filter on the input data.

15.4.2 Parameters

Parameter name Type Description

Display Format Enum Dotted (K28.5 D21.5): displays the 3b4b and 5b6b code
blocks separately, with K or D prefix.
Hex (K.bc b5): displays data as hex byte values and control
codes with a K prefix.

15.4.3 Output Signal

The 8B/10B filter outputs a time series of 88/10B sample objects. These consist of a control/data
flag and a byte of data.

Type Description Color Format

Control Control codes K%d.%d-+

Data Upper layer protocol data D%d.%d-+

Error Malformed data ERROR

74 CHAPTER 15. FILTERS
15.5 8B/10B (TMDS)

Decodes the 8-to-10 Transition Minimized Differential Signalling line code used in DVI and HDMI.

Like the 8B/10B (IBM) line code, TMDS is an 8-to-10 bit serial line code. TMDS, however,
is designed to minimize the number of toggles in the data stream for EMC reasons, rendering it
difficult to synchronize a CDR, PLL to. As a result, HDMI and DVT provide a reference clock at the
pixel clock rate (1/10 the serial data bit rate) along with the data stream to provide synchronization.

Waveform Group 1

f,

CITLO, CTLO

Figure 15.3: Example TMDS decode

15.5.1 Inputs

Signal name Type Description
data 1-bit digital Serial TMDS data line
clk 1-bit digital DDR bit clock, typically generated by use of the Clock Recovery

(PLL) filter on the input data. Note that this is 5x the rate of
the pixel clock signal.

15.5.2 Parameters

Parameter name Type Description

Lane Number Integer Lane number within the link (0-3)

15.5.3 Output Signal

The TMDS filter outputs a time series of TMDS sample objects. These consist of a type field and
a byte of data.

The output of the TMDS decode is commonly fed to the DVI or HDMI protocol decoders.

Type Description Color Format
Control Control codes (H/V sync) O/ ar Il CT1L%d
Data Pixel /island data Data %02x

Error Malformed data Error ERROR

Guard band HDMI data/video guard band [BEEERGIES GB

15.6. AC COUPLE 75

15.6 AC Couple

Automatically removes a DC offset from an analog waveform by subtracting the average of all
samples from each sample.

This filter should only be used in postprocessing already acquired data, or other situations in
which AC coupling in the hardware (via an AC coupled probe, or coaxial DC block) is not possible.

>

AN NANAAAAA T
PREATACAPRVRCAVRTACAN

(acicLk p)l

Figure 15.4: Example AC coupling

15.6.1 Inputs

Signal name Type Description
din Analog Input waveform

15.6.2 Parameters

This filter takes no parameters.

15.6.3 Output Signal

This filter outputs an analog waveform with identical sample rate to the input, vertically shifted to
center the signal at zero volts.

76 CHAPTER 15. FILTERS

15.7 AC RMS

Measures the Root Mean Square value of the waveform after removing any DC offset. This mea-
surement can be made averaged across the entire waveform, or on each cycle in the waveform.

707.958 mV
707.758 mv
707.558 mV
707.358 mV
707.158 mV
706.958 mV

Per Cycle AC RMS 706.758 mV
Average AC RMS
Maximum 707.1067 mV
Average 707.1067 mV
Minimum 707.1067 mV

Figure 15.5: Example of an AC RMS Measurement of a Sinewave with 1V peak voltage

15.7.1 Inputs

Signal name Type Description
din Analog Input waveform

15.7.2 Parameters

Parameter name Type Description
Measurement Type FEnum Average: Measure the average AC RMS value
Per Cycle: Measure the per cycle AC RMS value

15.7.3 Output Signal

This filter produces an output waveform only for the per cycle measurement type. This displays
the AC RMS value of every cycle.

15.8. AREA UNDER CURVE

15.8 Area Under Curve

Measures the area under the curve by integrating the data points. By default, area measured above
ground is considered as positive and area measured below the ground is considered negative. The
negative area can also be considered as positive by changing a filter parameter. The measurement
can be performed on the full record or on each cycle.

200 ms 400 ms. 600 ms 800 ms

159.7 mVs
139.7 mVs
119.7 mVs
99.7 mVs
79.7 mVs
59.7 mVs
39.7 mVs
19.7 mvs

o e 20.5 mVs
True Area (Integral)

Figure 15.6: Example of true area under the curve measurement (Integral)

400 ms 800 ms

Sine : 100 kS|

100 kS/s

380 mVs

280 mVs

180 mVs

Absolute Area

Figure 15.7: Example of absolute area under the curve measurement

78 CHAPTER 15. FILTERS

380 mVs
280 mVs
180 mVs

80 mVs
-20 mVs
-120 mVs

-220 mVs

Per Cycle Absolute Area

Figure 15.8: Example of per-cycle absolute area under the curve measurement

15.8.1 Inputs

Signal name Type Description

din Analog Input waveform

15.8.2 Parameters

Parameter name Type Description

Measurement Type Enum Full Record: Measure the area of entire waveform
Per Cycle: Measure the area of each cycle in the waveform

Area Type Enum True Area: Consider area below ground as negative
Absolute Area: Consider area below ground as positive

15.8.3 Output Signal

For full record measurement, this filter outputs a waveform indicating total area measured till the
time on the waveform. For per cycle measurement, this filter outputs waveform representing area
of each cycle.

15.9. ADL5205 79
15.9 ADL5205

Decodes SPI data traffic to one half of an ADL5205 variable gain amplifier.
TODO: Screenshot

15.9.1 Inputs

Signal name Type Description
spi SPI bus The SPI data bus

15.9.2 Parameters

This filter takes no parameters.

15.9.3 Output Signal

13

This filter outputs one ADL5205 sample object for each write transaction, formatted as “write:

FA=2 dB, gain=8 dB".

80 CHAPTER 15. FILTERS

15.10 Autocorrelation

This filter calculates the autocorrelation of an analog waveform. Autocorrelation is a measure of
self-similarity calculated by multiplying the signal with a time-shifted copy of itself. In Fig. 15.9,
strong peaks can be seen at multiples of the 8b/10b symbol rate.

For best performance, it is crucial to keep the maximum offset as low as possible, since filter
run time grows linearly with offset range.

Autocorrelation(C1 - C2)

Figure 15.9: Example of autocorrelation on a serial data stream

15.10.1 Inputs

Signal name Type Description

din Analog Input waveform

15.10.2 Parameters

Parameter name Type Description
Max offset Integer Maximum shift (in samples)

15.10.3 Output Signal

This filter outputs an analog waveform with the same timebase as the input, one sample for each
correlation offset.

15.11. BASE 81

15.11 Base

Calculates the base (logical zero level) of each cycle in a digital waveform.

It is most commonly used as an input to statistics, to view the average base of the entire
waveform. At times, however, it may be useful to view the base waveform. For example, in Fig.
15.10, the vertical eye closure caused by channel ISI is readily apparent.

:E;az.e{r::l - r::'.?_'}:

Figure 15.10: Example of base measurement on a serial data stream

15.11.1 Inputs

Signal name Type Description
din Analog Input waveform

15.11.2 Parameters

This filter takes no parameters.

15.11.3 Output Signal

This filter outputs an analog waveform with one sample for each group of logical zeroes in the input
signal, containing the average value of the zero level for the middle 50% of the low period.

82 CHAPTER 15. FILTERS
15.12 BIN Import

Loads an Agilent / Keysight / Rigol binary waveform file.

15.13. BURST WIDTH 83

15.13 Burst Width

Measures the burst width of each burst in a waveform. A Burst is a sequence of adjacent crossings
of the mid level reference of the waveform. Burst width is the duration of this sequence. Bursts
are separated by a user-defined idle time that can be provided as a parameter to this filter. The
measurement is made on each burst in the waveform.

Burstwidth_8(Burst Waveform)
Burst W:

Figure 15.11: Example of burst width measurement

15.13.1 Inputs

Signal name Type Description

din Analog Input waveform

15.13.2 Parameters

Parameter name Type Description
Idle Time Integer Minimum idle time with no toggles, before declaring start of a
new burst

15.13.3 Output Signal

This filter outputs an analog waveform with one sample for each burst in the input signal.

84

15.14 CAN

CHAPTER 15. FILTERS

Decodes the Control Area Network (CAN) bus, commonly used in vehicle control systems. Both
standard (11 bit) and extended (29 bit) IDs are supported.

CAN-FD frames are detected and flagged as such, but the current decode cannot parse them
fully. Full support is planned (scopehal:334).

CANH - CANL)

Figure 15.12: Example of CAN bus protocol decode

15.14.1 Inputs
Signal name Type Description
CANH Digital Thresholded CANH (or CANH-CANL) signal

15.14.2 Parameters

Parameter name

Type Description

Bit Rate

Integer

Bit rate of the bus (most commonly 250 or 500 Kbps)

15.14.3 Output Signal

The CAN bus decode outputs a time series of CAN sample objects. These consist of a type field

and a byte of data.

Type Description Color Format
Control Start of frame SOF

ID CAN ID Address ID %x

RTR Remote Transmission Request N@feiiingo)! DATA | REQ
FD mode CAN-FD mode Control FD | STD
RO Reserved bits Preamble RSVD

DLC Data Length Code Control Len 3

Data Payload data Data %02x

Valid CRC Good checksum Checksum OK = CRC: %04x
Invalid CRC Bad checksum (@i meEel CRC: %04x
CRC delimiter Bus turnaround Preamble CRC DELIM
ACK Acknowledgement Checksum OK ACK

NAK Missing acknowledgement Checksum Bad IV

ACK delimiter Bus turnaround Preamble ACK DELIM
EOF End of frame Preamble EOF

https://github.com/glscopeclient/scopehal/issues/334

15.15. CHANNEL EMULATION 85

15.15 Channel Emulation

This filter models the effects of applying an arbitrary channel, described via a single path of a set
of S-parameters, to a waveform. Fig. 15.13 shows the result of passing a 1.25 Gbps serial data
pattern through S21 of a 10x oscilloscope probe with approximately 500 MHz bandwidth. The ISI,
attenuation, and phase shift introduced by the channel can all be seen.

0fs 5ns 10 ns 15 ns 20 ns 25 ns

|ChannelEmulation(C1 - C2, flexground.s2p)| l l

Figure 15.13: Example of channel emulation on a serial data stream

The channel model works in the frequency domain. An FFT is performed on the input, then
each complex point is scaled by the interpolated magnitude and rotated by the phase, then an
inverse FFT is used to transform the signal back into the time domain.

The group delay of the channel is then estimated and samples are discarded from the beginning
of the waveform to prevent causality violations. For example, when performing channel emulation
using a network with a 1ns group delay, the output waveform will begin 1ns after the input (since
the channel output before this depends on input samples before the start of the waveform). Note
that the automatic group delay estimation uses points from roughly the center of the S-parameter
dataset in the current implementation; channels which do not have a significant passband around
this frequency will give incorrect group delay estimates. The “Group Delay Truncation Mode"
parameter can be set to manual in this case, selecting the “Group Delay Truncation" parameter
instead of the automatically estimated value.

By choosing appropriate stimulus waveforms and S-parameter paths, many different kinds of
analysis can be performed. For example, given a 4-port network describing two transmission lines
(with ports 1 and 3 as input, and 2 and 4 as output):

e Applying S11 to a step or impulse waveform gives TDR response of the port 1-2 channel.

Applying So1 to an impulse waveform gives impulse response of the port 1-2 channel

Applying S21 to a serial data stream gives the port 1-2 signal as it would be seen by a receiver

Applying S31 to a serial data stream gives the NEXT between the port 1-2 and 3-4 channels

Applying S41 to a serial data stream gives the FEXT between the port 1-2 and 3-4 channels

Note that only the single S-parameter path provided is considered, and reflections elsewhere in
the system are not modeled. As a result, multiple applications of this filter to emulate a large circuit
piecewise (for example, a cable followed by a fixture) may give inaccurate results since reflections
between the two networks are not considered. In this situation, it is preferable to use a circuit
simulator to calculate combined S-parameters of the entire circuit and then perform the channel
emulation once.

86 CHAPTER 15. FILTERS

15.15.1 Inputs

Signal name Type Description

signal Analog Input waveform
mag Analog S-parameter magnitude channel
ang Analog S-parameter angle channel

15.15.2 Parameters

Parameter name Type Description
Max Gain Float Maximum gain to apply
Group Delay Truncation Int Group delay override for manual mode

Group Delay Truncation Mode Enum Specifies manual or automatically estimated group
delay

15.15.3 Output Signal

This filter outputs an analog waveform with the same timebase as the input, with the emulated
channel applied.

15.16. CLIP 87

15.16 Clip

This filter limits the maximum or minimum value of a waveform to a given value. It can be configured
to clip “above" in which case it imposes an upper limit or “below" in which case it imposes a lower
limit.

15.16.1 Inputs

Signal name Type Description

din Analog Input waveform

15.16.2 Parameters

Parameter name Type Description
Behavior Enum Select between clipping values above or below selected value
Level Float Maximum/minimum signal level

15.16.3 Output Signal

This filter outputs an analog waveform with the same timebase as the input, clipped as specified
by the parameters.

88 CHAPTER 15. FILTERS
15.17 Clock Recovery (D-PHY HS Mode)

Extracts a double-rate clock from a MIPI D-PHY clock-+data stream, which is gated to only toggle
when the data input is in HS mode. This can be used for generating eye patterns of the HS-mode
data.

15.18. CLOCK RECOVERY (PLL) 89

15.18 Clock Recovery (PLL)

This filter uses a PLL to recover a clock from a serial data stream. The recovered clock is double-
rate and phased 90°with respect to the data, such that the data can be sampled directly by both
edges of the PLL output clock.

When the optional clock gating input is low, the output does not toggle and any edges in the
input signal are ignored. As soon as the gate goes high, the PLL will phase shift the internal NCO
to align with the next transition in the input signal and then begin running closed-loop.

NOTE: The current edge detector uses a single threshold suitable for NRZ inputs. When using a
multi-level modulation such as PAM-4 or MLT-3, set the threshold to the highest or lowest crossing
level. This will work fine for MLT-3 but introduces some data-dependent jitter in PAM signals (since
the slew rate for an 00-11 transition is different than that for a 10-11 transition). The resulting
recovered clock should still be adequate for protocol decoding, however a better edge detector will
need to be implemented in order to do adequate jitter measurements on PAM waveforms. An edge
detector suitable for PAM is planned (scopehal:77).

The current implementation of this filter uses a simple bang-bang control loop which is fast
and provides reasonable jitter transfer performance (passing high frequency jitter but rejecting
spread spectrum modulation), but does not precisely match the jitter transfer characteristics of any
particular serial data standard. In the future, several standard PLL responses including the Fibre
Channel golden PLL (scopehal:163) will be supported as options.

Figure 15.14: Example of CDR PLL on a serial data stream

15.18.1 Inputs

Signal name Type Description

IN Analog Input waveform
Gate Digital Clock enable signal, or NULL to disable gating

15.18.2 Parameters

Parameter name Type Description

Symbol rate Float Symbol rate, in Hz
Threshold Float Decision threshold for the edge detector, in volts

15.18.3 Output Signal

This filter outputs an digital waveform with one sample per transition of the recovered clock.

https://github.com/glscopeclient/scopehal/issues/77
https://github.com/glscopeclient/scopehal/issues/163

90 CHAPTER 15. FILTERS
15.19 Clock Recovery (UART)

Simple DLL suitable for displaying eye patterns of RS232 and similar protocols.

15.20. COMPLEX IMPORT

15.20 Complex Import

91

Loads waveform data from a raw binary file containing I/Q samples in one of several formats.
Regardless of sample format, the samples must be in I-Q-I-Q order.

Supported formats (native endianness, no byte swapping is performed):

Signed int8

Unsigned int8

Signed int16

Float32

Float64

15.20.1 Inputs

This filter takes no inputs.

15.20.2 Parameters

Parameter name Type

Description

Complex File String Path to the input file
File Format Enum Data type of the samples
Sample Rate Int Sampling frequency

15.20.3 Output Signal

This filter outputs two streams named “I" and “Q" containing the I/Q waveform data.

92 CHAPTER 15. FILTERS

15.21 CSV Export

Saves waveform data to a comma-separated-value file.

15.22. CSV IMPORT

15.22 CSV Import

Loads waveform data from a comma-separated-value file.

93

94 CHAPTER 15. FILTERS

15.23 Current Shunt

Converts a voltage waveform acquired across a known resistance into a current waveform.

15.24. DC OFFSET 95

15.24 DC Offset

Adds a constant value to each sample in an analog waveform.

15.24.1 Inputs

Signal name Type Description

din Analog Input waveform

15.24.2 Parameters

Parameter name Type Description
Offset Float The offset to apply

15.24.3 Output Signal

This filter outputs an analog waveform with one sample for each sample in the input, shifted by the
requested offset.

96 CHAPTER 15. FILTERS

15.25 DDJ

Calculates the peak-to-peak data-dependent jitter for a serial data stream.

This filter uses the non-repeating-pattern method, which allows DDJ to be computed for ar-
bitrary waveforms rather than requiring a short, repeating PRBS. In this method, per-UI jitter
(TIE) measurements are split across 2" histogram bins, one for each possible combination of the
preceding n bits. The jitter samples for each bin are then averaged to remove the effects of other
jitter, leaving only the DDJ. The final DDJ value is reported as the difference between the minimum
and maximum histogram bins.

The current implementation uses a fixed window size of n = 8 UL If the channel has significant
memory effects or reflections with delays of more than 8 UI, DDJ maybe underestimated.

The current implementation only supports NRZ signals and cannot measure DDJ for MLT3 or
PAM waveforms.

15.25.1 Inputs

Signal name Type Description

TIE Analog TIE waveform computed by the TIE filter
Threshold Digital Thresholded digital sample values
Clock Digital Double rate, center aligned sampling clock for threshold values

15.25.2 Parameters

This filter takes no parameters.

15.25.3 Output Signal

This filter outputs an analog waveform with a single sample containing the computed DDJ value.

Additionally, the raw DDJ histogram is stored internally and may be accessed by other filters
via the C++ API. There is currently no way to display the histogram content.

15.26. DDR1 COMMAND BUS

15.26 DDR1 Command Bus

Decodes the command bus for first-generation DDR SDRAM.

97

98 CHAPTER 15. FILTERS

15.27 DDR3 Command Bus

Decodes the command bus for third-generation DDR SDRAM.

15.28. DE-EMBED 99

15.28 De-Embed

Applies the inverse of a channel (described by a single path in an S-parameter dataset, normally
S21) to a signal, in order to calculate what the waveform would have looked like at the input to a
cable, fixture, etc. given the signal seen at the output.

The channel model works in the frequency domain. An FFT is performed on the input, then
each complex point is scaled by the interpolated magnitude and rotated by the phase, then an
inverse FFT is used to transform the signal back into the time domain.

The group delay of the channel is then estimated and samples are discarded from the end of
the waveform to prevent causality violations. For example, when performing a de-embed using a
network with a 1ns group delay, the output waveform will end 1ns before the input does (since the
channel output after this depends on input samples after the end of the stimulus waveform). Note
that the automatic group delay estimation uses points from roughly the center of the S-parameter
dataset in the current implementation; channels which do not have a significant passband around
this frequency will give incorrect group delay estimates. The “Group Delay Truncation Mode"
parameter can be set to manual in this case, selecting the “Group Delay Truncation" parameter
instead of the automatically estimated value.

Note that only the single S-parameter path provided is considered, and reflections elsewhere
in the system are not modeled. As a result, multiple applications of this filter to de-embed a
large circuit piecewise (for example, a cable followed by a probe) may give inaccurate results since
reflections between the two networks are not considered. In this situation, it is preferable to use a
circuit simulator or the S-Parameter Cascade filter to calculate combined S-parameters of the entire
circuit and then perform a single de-embed.

The maximum gain the de-embed applies is capped (default 20 dB) in order to prevent amplifying
noise outside the passband of the network being de-embedded.

15.28.1 Inputs

Signal name Type Description

signal Analog Input waveform
mag Analog S-parameter magnitude channel
ang Analog S-parameter angle channel

15.28.2 Parameters

Parameter name Type Description

Max Gain Float Maximum gain to apply

Group Delay Truncation Int Group delay override for manual mode

Group Delay Truncation Mode Enum Specifies manual or automatically estimated group
delay

15.28.3 Output Signal

This filter outputs an analog waveform with the same timebase as the input, with the emulated
channel applied.

100 CHAPTER 15. FILTERS

15.29 Deskew

Moves an analog waveform earlier or later in time to compensate for trigger offsets, probe length
mismatch, etc. It is generally preferable to deskew using the skew adjustment on the channel during
acquisition; this filter is provided for correction in postprocessing.

15.29.1 Inputs

Signal name Type Description

din Analog Input waveform

15.29.2 Parameters

Parameter name Type Description
Skew Float Time offset to shift the waveform

15.29.3 Output Signal

This filter outputs an analog waveform with one sample for each sample in the input, phase shifted
by the requested offset.

15.30. DIGITAL TO NRZ 101

15.30 Digital to NRZ

Convert a digital signal (and associated clock) to an analog NRZ waveform. This filter uses a
simplistic piecewise linear rise/fall time model: the output stays at the logic low/high voltage until
the input changes, then ramps at a constant rate to then new value. For more accurate modeling
of edge shape use the IBIS Driver filter with the appropriate IBIS model for your DUT.

15.30.1 Inputs

Signal name Type Description
data Digital Digital data to send
clk Digital Clock for data

15.30.2 Parameters

Parameter name Type Description

Level 0 Float Voltage to send when the input is a logic 0
Level 1 Float Voltage to send when the input is a logic 1
Sample Rate Int Sample rate for the generated waveform
Transition Time Int Rising and falling edge time

15.30.3 Output Signal

This filter outputs an analog NRZ version of the provided digital input, sampled uniformly at the
specified rate.

102 CHAPTER 15. FILTERS

15.31 Digital to PAM4

Convert a digital signal (and associated clock) to an analog PAM-4 waveform. This filter uses a
simplistic piecewise linear rise/fall time model: the output stays at the current symbol’s voltage
until the input changes, then ramps at a constant rate to then new value. For more accurate
modeling of edge shape use the IBIS Driver filter with the appropriate IBIS model for your DUT.

The input data is a digital serial bit stream at twice the PAM4 symbol rate. Two consecutive
input bits map to a single PAM-4 output sample.

15.31.1 Inputs

Signal name Type Description
data Digital Serial digital data to send
clk Digital Clock for data

15.31.2 Parameters

Parameter name Type Description

Level 00 Float Voltage to send when the input is a logic 0-0
Level 01 Float Voltage to send when the input is a logic 0-1
Level 10 Float Voltage to send when the input is a logic 1-0
Level 11 Float Voltage to send when the input is a logic 1-1
Sample Rate Int Sample rate for the generated waveform
Transition Time Int Rising and falling edge time

15.31.3 Output Signal

This filter outputs an analog PAM-4 version of the provided digital input, sampled uniformly at the
specified rate.

15.32. DIVIDE 103

15.32 Divide

Divides one waveform by another.

104 CHAPTER 15. FILTERS

15.33 Downconvert

Performs digital downconversion by mixing a directly sampled RF signal with a two-phase local
oscillator, then outputs the downconverted signal. No LO rejection filtering or decimation is per-

formed.

15.34. DOWNSAMPLE 105
15.34 Downsample

Low-pass filters a signal to prevent aliasing, then decimates by an integer factor.

106 CHAPTER 15. FILTERS

15.35 DRAM Clocks

Given a DRAM command bus and a DQS strobe, produce separate gated DQ clock streams for
read and write bursts.

15.36. DRAM TRCD 107

15.36 DRAM Trcd

Calculates T,.q (RAS-to-CAS delay) for each newly opened row in a DRAM command bus stream.

108 CHAPTER 15. FILTERS

15.37 DRAM Trfc

Calculates T, ¢, (refresh-to-refresh delay) for each refresh operation in a DRAM command bus stream.

15.38. DUTY CYCLE 109

15.38 Duty Cycle

Calculates the duty cycle of a bimodal waveform. The duty cycle is defined as the percentage of
time spent in the high state divided by the period.

110 CHAPTER 15. FILTERS

15.39 DVI

Decodes Digital Visual Interface (DVI) video signals.

15.40. EMPHASIS 111
15.40 Emphasis

Adds pre/de emphasis to a signal.

112 CHAPTER 15. FILTERS
15.41 Emphasis Removal

Removes pre/de emphasis from a signal.

15.42. ENHANCED RESOLUTION 113
15.42 Enhanced Resolution

Applies a FIR low-pass filter to a signal to increase the vertical resolution and reduce noise at the
cost of reduced bandwidth. This technique assumes a small amount of Gaussian noise is present in
the input waveform, such that a signal whose true value is midway between two ADC codes will
randomly fluctuate between the two quantized values, with an average equal to the true value.

Each half bit of resolution reduces the bandwidth by an additional factor of two beyond the
Nyquist limit. For example, a 1.5 bit resolution improvement reduces the bandwith to Fnyquist /
8. The filter properties dialog displays the calculated -3 dB bandwidth based on the current input
sample rate.

15.42.1 Inputs

Signal name Type Description
in Analog Input signal

15.42.2 Parameters

Parameter name Type Description
Bits Enum Number of additional bits of resolution to add

114 CHAPTER 15. FILTERS

15.43 Envelope

Finds the minimum and maximum of each sample in the input over time, and outputs them as

separate streams.

15.44. ETHERNET - 10BASET 115
15.44 Ethernet - 10baseT

Decodes the 10base-T Ethernet PCS/PMA as specified in IEEE 802.3-2018 clause 14.

116 CHAPTER 15. FILTERS

15.45 Ethernet - 100baseTX

Decodes the 100base-TX Ethernet PMA /PCS as specified in IEEE 802.3-2018 clause 24 and 25,
and the ANSI X3T12 FDDI PHY.

15.46. ETHERNET - 1000BASEX 117
15.46 Ethernet - 1000baseX

Decodes the 1000base-X Ethernet PCS as specified in IEEE 802.3-2018 clause 36.

Signal name Type Description

data 8b/10b Output of 8b/10b protocol decode

15.46.1 Parameters

This filter takes no parameters.

15.46.2 Output Signal

The 1000base-X filter outputs a series of Ethernet frame segment objects.

Type Description Color Format
Preamble Preamble Preamble PREAMBLE
Preamble Start of frame delimiter [IEEeENs)(E SFD
Address Src/dest MAC Address From 02:00:11:22:33:44
Control Ethertype Control Type: 1Pv4
Type: Oxbeef
Control VLAN tag Control VLAN 10, PCP 0
Data Frame data Data ab
Checksum OK Valid FCS CRC: Oxdeadbeef
Checksum Bad Invalid FCS (@liaicpinmetel CRC: OxbaadcOde
Error Malformed data Error ERROR

TODO: Document protocol analyzer output

118 CHAPTER 15. FILTERS

15.47 Ethernet - GMII

Decodes the Gigabit Media Independent Interface as specified in IEEE 802.3-2018 clause 35.

15.48. ETHERNET - QSGMII 119

15.48 Ethernet - QSGMII

Converts a Quad SGMII data stream into four separate SGMII data streams which can be inde-

pendently decoded.

120 CHAPTER 15. FILTERS

15.49 Ethernet - RGMII

Decodes the Reduced Gigabit Media Independent Interface as specified in the RGMII 2.0 specifica-

tion.

15.50. ETHERNET - RMII 121

15.50 Ethernet - RMII

Decodes the Reduced Media Independent Interface as specified in the RMII specification.

122 CHAPTER 15. FILTERS

15.51 Ethernet - SGMII

Decodes Serial GMII data at 10, 100, or 1000 Mbps rates to Ethernet frames.

15.52. ETHERNET AUTONEGOTIATION 123

15.52 Ethernet Autonegotiation

Decodes the Base-T autonegotiation signaling for Ethernet as specified in IEEE 802.3-2018 clause
28.

This filter outputs a stream of 16-bit negotiation codewords, which is typically fed to the Ethernet
Autonegotiation Page filter.

124 CHAPTER 15. FILTERS

15.53 Ethernet Autonegotiation Page

Decodes a stream of 16-bit negotiation codewords to ability values, as specified in IEEE 802.3-2018
annex 28A, 28B, and 28C.

Note that the autonegotiation protocol is stateful, so it is not possible to definitively decode a
single code word or small group of them in isolation. For accurate decoding, the input waveform
should start with the Base Page (sent during the link-down state before a link partner has been
detected).|

15.54. ETHERNET BASE-X AUTONEGOTIATION 125

15.54 Ethernet Base-X Autonegotiation

Decodes the Base-X autonegotiation signaling for Ethernet as specified in IEEE 802.3-2018 clause
37.

Also supports the extended autonegotiation used by SGMII.

126 CHAPTER 15. FILTERS
15.55 Eye Bit Rate

Measures the bit rate of an eye pattern.

15.56. EYE HEIGHT 127

15.56 Eye Height

Measures the vertical opening of an eye pattern.

128 CHAPTER 15. FILTERS
15.57 Eye P-P Jitter

Measures the peak-to-peak jitter of an eye pattern.

15.58. EYE PATTERN 129

15.58 Eye Pattern

Calculates an eye pattern.

130 CHAPTER 15. FILTERS
15.59 Eye Period

Measures the UI width of an eye pattern.

15.60. EYE WIDTH 131

15.60 Eye Width

Measures the horizontal opening of an eye pattern.

132 CHAPTER 15. FILTERS

15.61 Fall

Measures the fall time of each falling edge in a waveform.

15.62. FFT 133

15.62 FFT

Calculates a Fast Fourier Transform and displays the magnitude response.

134 CHAPTER 15. FILTERS

15.63 FIR

Applies a finite-impulse-response filter to a signal.

15.64. FREQUENCY 135

15.64 Frequency

Measures the frequency of each cycle in a waveform.

136 CHAPTER 15. FILTERS

15.65 FSK

Converts a frequency-vs-time waveform (typically generated by the Vector Frequency filter either
directly or through a denoising filter) to a digital waveform. As of now, only BFSK is supported.

The filter calculates a histogram of the input signal each waveform, expecting a bimodal distri-
bution. The two highest histogram peaks are selected as the nominal logic 0 and 1 levels, with the
higher frequency assigned to logic 1 and the lower to logic 0.

Thresholding is performed at the midpoint of the nominal 0 and 1 levels, with hysteresis equal
to 20% of the difference between the nominal levels. Using adaptive thresholds allows the filter
to automatically track frequency-hopping systems as long as only one packet is present in each
waveform.

TODO: re-histogram any time we break squelch?

15.66. GROUP DELAY 137

15.66 Group Delay

Calculates the group delay of a phase-vs-frequency waveform, %.

15.66.1 Inputs

Signal name Type Description
Phase Analog Phase angle vs frequency

15.66.2 Parameters

This filter takes no parameters.

15.66.3 Output Signal

This filter outputs an analog waveform with one sample per frequency point, containing the group
delay at that frequency.

138 CHAPTER 15. FILTERS

15.67 Histogram

Computes a histogram from incoming data. Histogram counts are accumulated across multiple pro-
cessed waveforms and cleared on "Clear Sweeps." Number of histogram bins is determined from the
bin size parameter and the max/min values configured. Default behavior is to autorange the input
and have 100fs bins. Samples outside a configured manual range will fall into the highest/lowest
bin and the "CLIPPING" flag will be set on the output waveform.

15.67.1 Inputs

Signal name Type Description
data Analog Input data. Usually in units of fs.

15.67.2 Parameters

Parameter name Type Description

Autorange Bool If the filter should automatically range the maximum and min-
imum bins

Min Value Float Lower end of the lowest bin when Autorange disabled

Max Value Float Higher end of the highest bin when Autorange disabled

Bin Size Float Size of a bin. Number of bins is determined from this and

max/min values

15.67.3 Output Signal

This filter outputs an analog waveform with one sample per bin and a value in counts. The "CLIP-
PING" flag on a waveform indicates that input samples fell outside the configured range of bins
(when not using Autoranging.)

15.68. HORIZONTAL BATHTUB 139

15.68 Horizontal Bathtub

Calculates a bathtub curve across a horizontal slice through an eye pattern.

140 CHAPTER 15. FILTERS

15.69 HDMI

Decodes HDMI

15.70. I2C 141

15.70 I%C

Decodes the Phillips I?C bus protocol.

142 CHAPTER 15. FILTERS

15.71 I2C EEPROM

Decodes common I2C EEPROM memory devices

15.72. I*C REGISTER 143

15.72 I?C Register

Decodes low level I2C bus traffic into a series of register read-write transactions targeting a specific
device address.

This filter assumes that the device has a fixed sized address pointer. Register writes consist of a
write to the device’s address, the register address, then write data. Reads consist of a write to the
device’s address, the register address, a read from the device’s address, and read data.

144 CHAPTER 15. FILTERS

15.73 1IBIS Driver

Converts a digital waveform and double-rate clock to an analog waveform using the rising and falling
edge waveforms from an IBIS model.

This filter assumes a perfect 50Q load or other matched load as specified in the IBIS model;
clamp behavior of the driver in response to channels with significant reflection is not currently
modeled.

IBIS-AMI is not currently supported, however this is planned (scopehal:192).

Model name and termination conditions are dynamically created enumerations; the set of legal
values for these fields depends on the specific .ibs file loaded.

Note that IBIS corners specify minimum, typical, or maximum output voltage, not timing or
other properties.

15.73.1 Inputs

Signal name Type Description

data Digital Digital waveform to transmit
clk Digital Transmit clock (double rate)

15.73.2 Parameters

Parameter name Type Description

Corner Enum Name of the corner to use

File Path String Filesystem path to the IBIS model

Model Name Enum Name of the I/O cell model within the IBIS model to use
Sample Rate Int Sample rate to use for the output waveform

Termination Enum Name of the termination condition to use

15.73.3 Output Signal

This filter outputs an analog waveform containing uniformly spaced samples at the specified rate.

https://github.com/glscopeclient/scopehal/issues/192

15.74. INVERT 145

15.74 Invert

Inverts an analog waveform by negating each sample.

146 CHAPTER 15. FILTERS

15.75 Intel eSPI

Decodes the Enhanced Serial Peripheral Interface protocol, used between Intel CPUs and peripherals
such as baseboard management controllers (BMCs) and embedded controllers (ECs).

15.76. IPV4 147

15.76 IPv4

Internet Protocol version 4

148 CHAPTER 15. FILTERS

15.77 1IQ Squelch

Gates I/Q data to eliminate noise between packets. Signal regions with amplitude below the squelch
threshold are replaced with an equal number of zero-valued samples.

15.78. JITTER 149

15.78 Jitter

Adds random and/or periodic jitter to a digital waveform by displacing each sample.

Random jitter is unbounded and has a Gaussian distribution with a user-specified standard
deviation. Periodic jitter is sinusoidal and has a bounded range of -1 to +1 times the specified
amplitude. Only a single frequency of Pj is supported, however several instances of this filter may
be chained in order to inject Pj at multiple frequencies. The starting phase of the Pj sinusoid is
random.

15.78.1 Inputs

Signal name Type Description

din Digital Input waveform

15.78.2 Parameters

Parameter name Type Description

Rj Stdev Float Standard deviation of random jitter
Pj Frequency Float Frequency of periodic jitter
Pj Amplitude Float Amplitude of periodic jitter

15.78.3 Output Signal

This filter outputs a digital waveform with one sample per sample in the input waveform, with
sample time shifted by the sum of random and periodic jitter terms. The output waveform will
have 1fs timebase resolution and not be dense packed, regardless of the input timebase configuration.

150 CHAPTER 15. FILTERS
15.79 Jitter Spectrum

Calculates an FFT of a TIE waveform.

15.80. JTAG 151

15.80 JTAG

Joint Test Action Group

152 CHAPTER 15. FILTERS
15.81 Magnitude

Calculates the magnitude of a complex valued signal

15.82. MDIO 153

15.82 MDIO

Decodes the Management Data Input/Output interface on Ethernet PHYs. At the moment, only
Clause 22 format is supported.

154 CHAPTER 15. FILTERS

15.83 Memory

Takes a snapshot of the input which remains “frozen" until manually updated. Typically used for
comparing past and present values of a signal on the same plot.

15.84. MIL-STD-1553 155

15.84 MIL-STD-1553

Decodes the MIL-STD-1553 avionics data bus.

156 CHAPTER 15. FILTERS

15.85 MIPI D-Phy Data

Converts two streams of D-Phy Symbols (one data and one clock) into bytes and control events.

Only a single data lane is supported at the moment, but multi-lane support will be added in
the future.

This filter only supports high speed data; escape mode data is handled by the D-PHY Escape
Mode filter.

15.86. MIPI D-PHY ESCAPE MODE 157
15.86 MIPI D-Phy Escape Mode

Converts a stream of D-PHY Symbols for a data lane into low-power data.

158 CHAPTER 15. FILTERS

15.87 MIPI D-Phy Symbol

Decodes one or two analog channels to MIPI D-PHY symbols (HS/LS line states). Either the
positive half, or both positive and negative, of the pair may be provided.

If only the positive half is provided, it is possible to decode HS data and clocks, but not the LP-
01 and LP-10 states, as these are indistinguishable from LP-00 and LP-11. This prevents proper
decoding of Escape Mode data, although Start-Of-Transmission sequences may be inferred from
context.

15.88. MIPI DSI FRAME 159

15.88 MIPI DSI Frame

Converts a MIPI DSI Packet stream into video scanlines.

160 CHAPTER 15. FILTERS

15.89 MIPI DSI Packet

Converts two streams of D-Phy Symbol’s (one data and one clock) into MIPI DSI packets.

15.90. MOVING AVERAGE 161
15.90 Moving Average

Calculates a moving average (box filter) over an analog waveform.

162 CHAPTER 15. FILTERS

15.91 Multiply

Multiplies one waveform by another. No resampling is performed; both inputs must have identical
sample rates.
Unit conversions are performed, for example the product of a voltage and current waveform is

a power waveform.

15.92. NOISE 163

15.92 Noise

Adds Gaussian noise with a specified standard deviation to a waveform.

164 CHAPTER 15. FILTERS

15.93 OFDM Demodulator

NOTE: this filter is still under development and not suitable for general use.

15.94. OVERSHOOT 165

15.94 Overshoot

166 CHAPTER 15. FILTERS

15.95 PAM4 Demodulator

Converts an analog PAM4 waveform and recovered clock into a digital serial waveform and recovered
clock at twice the symbol rate. This allows conventional NRZ protocol decodes to be applied to a
PAM4 data stream.

Gray coding is assumed, as used by all major PAM-4 networking standards.

15.96. PARALLEL BUS 167

15.96 Parallel Bus

168 CHAPTER 15. FILTERS

15.97 PCle Data Link

Decodes the Data Link layer of PCI Express. At this layer DLLPs are fully decoded. TLP sequence
numbers are visible and CRC16s are checked, however TLP content is displayed as hex dumps.

15.98. PCIE GEN 1/2 LOGICAL 169

15.98 PCle Gen 1/2 Logical

Decodes the Logical Sub-Block of the PCI Express 1.0 and 2.0 PHY. This layer decodes 8B/10B
symbols and the LFSR scrambler. TLP and DLLP start/end markers are identified but no packet

decoding is performed.

170 CHAPTER 15. FILTERS

15.99 PCle Gen 3/4/5 Logical

Decodes the Logical Sub-Block of the PCI Express 3.0, 4.0, and 5.0 PHY. This layer converts
128b/130b symbols into a stream of protocol packets and content. TLP and DLLP start/end
markers are identified but no packet decoding is performed.

15.100. PCIE LINK TRAINING 171
15.100 PCle Link Training

Decodes the initial PCle genl/2 link training sequence

172 CHAPTER 15. FILTERS

15.101 PCle Transport

Decodes the Transport layer of PCI Express. At this layer TLPs are fully decoded, however only a
unidirectional view of the system is visible (only TX or only RX).

15.102. PEAK HOLD 173

15.102 Peak Hold

174 CHAPTER 15. FILTERS

15.103 Peak-to-Peak

15.104. PERIOD 175

15.104 Period

176 CHAPTER 15. FILTERS

15.105 Phase

Displays the relative phase of a signal as a function of time. Typically used for visualizing PSK

modulations.

15.106. PHASE NONLINEARITY 177

15.106 Phase Nonlinearity

Given a phase angle waveform, outputs the difference between the actual phase and linear phase.
A perfectly linear network will be displayed as a horizontal line at Y=0; leading or lagging phase
will show up as spikes above or below zero.

The nominal linear phase response is calculated based on the averge group delay between two
user-supplied frequencies. Moving the reference frequencies further apart reduces the impact of
phase noise in the data (since more points are being averaged) however both points must be located
well within the linear region of the network in order to give accurate results.

Figure 15.15: Example of nonlinear phase of a filter in the stopband

15.106.1 Inputs

Signal name Type Description
Phase Analog Input waveform

15.106.2 Parameters

Parameter name Type Description
Ref Freq Low Float Lower reference frequency
Ref Freq High Float Upper reference frequency

15.106.3 Output Signal

This filter outputs an analog waveform with one sample for each sample in the input, containing
the deviation from linear phase.

178 CHAPTER 15. FILTERS

15.107 PRBS

Generates a pseudorandom bit sequence, and double rate bit clock, with a specified bit rate from a

list of standard polynomials.

15.108. PULSE WIDTH 179

15.108 Pulse Width

This filter measures the length of pulses and outputs that as a waveform. It auto-thresholds analog
inputs at 50%.

15.108.1 Inputs

Signal name Type Description
din Analog Input waveform

15.108.2 Output Signal

This filter outputs an sparse analog waveform with the same timebase as the input, containing one
sample per pulse with a duration and value equal to the length of the pulse.

180 CHAPTER 15. FILTERS

15.109 Reference Plane Extension

Given a set of S-parameters, shifts the reference plane on one or two ports and outputs a new set

of S-parameters.

15.110. RJ + BUJ 181

15.110 Rj + BUj

Removes data-dependent jitter (DDJ) from a TIE waveform, leaving uncorrelated jitter (Rj and
BUj).

182 CHAPTER 15. FILTERS

15.111 QSPI

Quad SPI as used in serial Flash. Note that this filter only decodes quad mode streams, not x1
SPI.

15.112. QUADRATURE 183

15.112 Quadrature

Quadrature pulses from a rotary encoder

184 CHAPTER 15. FILTERS

15.113 Rise

Calculates the rise time for each cycle of a waveform

15.114. S-PARAMETER CASCADE 185

15.114 S-Parameter Cascade

Cascades two two-port networks and outputs a two-port network equivalent to the two input net-

works in series.

186 CHAPTER 15. FILTERS

15.115 S-Parameter De-Embed

Given a two port network equal to the cascade of two others, plus S-parameters for one of the two
sub-networks, output S-parameters for the other.

15.116. SCALE 187

15.116 Scale

Multiplies a waveform by a scalar.

188 CHAPTER 15. FILTERS

15.117 SD Card Command

Decodes the Secure Digital card command bus protocol

15.118. SINE 189

15.118 Sine

Generates a pure sine wave with specified frequency, amplitude, sample rate, and DC bias.

190 CHAPTER 15. FILTERS
15.119 Spectrogram

Displays a 2D plot of frequency vs time using configurable FFT length.

15.120. SPI 191

15.120 SPI

Serial Peripheral Interface.

192 CHAPTER 15. FILTERS

15.121 SPI Flash

Flash memory attached to a SPI or quad SPI bus. Typically these chips have part numbers that
start with “25".

15.122. SQUELCH 193

15.122 Squelch

Detects periods with no signal.

194 CHAPTER 15. FILTERS

15.123 Step

Generates a single step from one voltage level to another. Typically used for measuring step response
of a channel or doing TDR transforms on S-parameters.

15.124. SUBTRACT 195
15.124 Subtract

Subtracts one waveform from another. No resampling is performed; both inputs must have identical
sample rates.

15.124.1 Inputs

Signal name Type Description
IN+ Analog Positive input waveform

IN- Analog Negative input waveform

15.124.2 Parameters

This filter takes no parameters.

15.124.3 Owutput Signal

This filter outputs an analog waveform with one sample for each sample in the input, containing
the difference of the two input waveforms.

196 CHAPTER 15. FILTERS

15.125 SWD

The Serial Wire Debug protocol between a Debug Probe and an ARM Microcontroller, typically
from the CORTEX-M family. This decode recognises all SWD frame elements and validates type
and parity of both incoming and outgoing messages. It also identifies line resets and line protocol
change messages.

The SWD Protocol defines that the target will read and write on the rising edge of SWCLK. It
does not place any constraint on when the probe reads and writes. For the purposes of graphical

depiction each protocol element starts at a falling edge and continues to be valid until the next
falling edge, following the graphical convention established in the ARM documentation.

Reference: ARM Debug Interface v5 Architecture Specification, Chapter 4.

w Reg 04 OK X STOP X PARK X TURN

Figure 15.16: Example of SWD protocol decode

15.125.1 Inputs

Signal name Type Description
SWDIO Digital ~Serial Wire Data In/Out (To/From target)
SWCLK Digital Serial Wire Clock In (To Target from Debug Probe)

15.125.2 Parameters

No parameters are required for configuration of SWD. The protocol is clocked by SWCLK.

15.125.3 Output Signal

The SWD bus decode outputs a time series of SWD message elements, each of which may be one
or a number of bits long. Each message element consist of a type and optional numeric content.

15.125. SWD 197

Type Description Color Format

Line Control Line Reset Bl LINE RESET

Line Mode Line Mode Change to SWD Control JTAG TO SWD
Line Mode Line Mode Change to JTAG Control SWD TO JTAG
Line Mode Line Mode Change to Dormant Control SWD TO DORMANT
Line Mode Leave Dormant Mode Control LEAVE DORMANT
Start Start of frame NN START

APnDP Selection between AP and DP Control NIBY

RnW Read or Write mode Control R|W

ADDR AP or DP Address Address Reg %02x

Parity Good Header Parity OK

Parity Bad Header Parity Control BAD

Stop End of Header ISl STOP

Park Line Release sl PARK

Turnaround Line Direction Change IFE NI TURN

Acknowledge Good Response from target to request KO®itago)! ACK|WAIT

Acknowledge Bad Response from target to request Control FAULT|ERROR

Data Payload to/From Target IDEN) %08x

198 CHAPTER 15. FILTERS

15.126 SWD MEM-AP

Converts SWD accesses to MEM-AP registers into memory read-write transactions.

Reference: ARM Debug Interface v5 Architecture Specification, chapter 8.

15.127. TACHOMETER 199

15.127 Tachometer

Converts pulses from a tachometer to shaft speed

200 CHAPTER 15. FILTERS
15.128 Tapped Delay Line

Generic FIR filter with arbitrary tap values and delays. Can be used as-is for testing FIR filter
coefficients calculated by hand, but most commonly used as a base class for more specialized filters.

15.129. TCP 201

15.129 TCP

Decodes the Transmission Control Protocol (RFC 675). As of this writing, only IPv4 is supported as
a network layer protocol. IPv6 support is planned once an IPv6 protocol decode has been written.

202 CHAPTER 15. FILTERS

15.130 TDR

Converts a TDR waveform from volts to reflection coefficient or impedance.

15.131. TDR STEP DE-EMBED 203
15.131 TDR Step De-Embed

Given a waveform of a fast rising step, calculate the frequency response of a de-embedding network
to convert the measured waveform into an ideal unit step. The resulting data can be exported to a
Touchstone file.

The calculated response is typically used as input to the de-embed filter and applied to a
TDR/TDT waveform generated with the same pulse generator. This correction allows for overshoot,
ringing, and other artifacts on the pulse to be removed from the TDR/TDT response.

It is important that the input contain a single rising edge, and is reasonably stable before and
after the edge. If multiple cycles of the test step, or falling edges, are present inaccurate results may
be obtained.

NOTE: this filter is still under development and not suitable for general use.

204

CHAPTER 15. FILTERS

15.132 Time Outside Level

Measures the total integrated time a signal remains above a high reference level or below a low

reference level or both.

Sine : 2 kS|
100 GS/s

Time Outside Level

Maximum
Average
Minimum

10 ns
10 ns
10 ns

Figure 15.17: Example of time outside high level measurement with a high level threshold of OmV

15.132.1 Inputs

Signal name Type Description

din Analog Input waveform

15.132.2 Parameters

Parameter name Type

Description

High Level Float

High level reference voltage

Low Level Float

Low level reference voltage

Measurement Type Enum

High Level: Measure the total time the signal is above high
level reference voltage

Low Level: Measure the total time the signal is below low level
reference voltage

Both: Measure the total time the signal is both above and
below high level and low level reference voltages respectively

15.133. THERMAL DIODE 205

15.133 Thermal Diode

Converts an analog voltage measurement of a thermal diode to a temperature value

206 CHAPTER 15. FILTERS

15.134 Threshold

Converts an analog waveform to digital by thresholding at a constant level (no hysteresis).

15.134.1 Inputs

Signal name Type Description

din Analog Input waveform

15.134.2 Parameters

Parameter name Type Description
Threshold Float Decision threshold

15.134.3 Output Signal

This filter outputs an digital waveform with one sample for each sample in the input, which is true
if the corresponding input sample is above the threshold and false if less than or equal.

15.135. TIE 207

15.135 TIE

Calculates the time interval error of a data or clock signal with respect to an ideal “golden" clock
(typically obtained from a CDR PLL).

208 CHAPTER 15. FILTERS
15.136 Top

Calculates the top (logical one level) of each cycle in a digital waveform. It is most commonly used
as an input to statistics, to view the average top of the entire waveform.

15.136.1 Inputs

Signal name Type Description

din Analog Input waveform

15.136.2 Parameters

This filter takes no parameters.

15.136.3 Output Signal

This filter outputs an analog waveform with one sample for each group of logical ones in the input
signal, containing the average value of the one level.

15.137. TOUCHSTONE EXPORT 209
15.137 Touchstone Export

Saves S-parameter data to a Touchstone file.

210 CHAPTER 15. FILTERS
15.138 Touchstone Import

Loads a Touchstone file and displays the complex data in magnitude/angle format

15.139. TREND 211

15.139 Trend

Plots a trend of a scalar value over time

212 CHAPTER 15. FILTERS
15.140 TRC Import

Loads waveform data from a Teledyne LeCroy TRC waveform file.

15.141. UART 213

15.141 UART

214 CHAPTER 15. FILTERS

15.142 Unwrapped Phase

Given a phase angle waveform which wraps within the interval [-180°+180°], unwrap the phase
angle.

-5 GHz -2.5 GHz 0 mHz 2.5 GHz 5 GHz 7.5 GHz 10 GHz 12.5 GHz 15 GHz 17.5 GHz 20 GHz 22.5 GHz 25 GHz 27.5 GHz 30 G

AR AN
RS

| 32K243-40MLS5 Microstrip.s2p.521_ang

UnwrappedPhase 12(32K243-40MLS Microstri 1 ang)

Figure 15.18: Example of wrapped and unwrapped phase of a transmission line

15.142.1 Inputs

Signal name Type Description

Phase Analog Input waveform

15.142.2 Parameters

This filter takes no parameters.

15.142.3 Owutput Signal

This filter outputs an analog waveform with one sample for each sample in the input, containing
the unwrapped phase angle.

15.143. USB 1.0 / 2.X ACTIVITY 215

15.143 USB 1.0 / 2.x Activity

216 CHAPTER 15. FILTERS

15.144 USB 1.0 / 2.x Packet

15.145. USB 1.0 / 2.X PCS 217

15.145 USB 1.0 / 2.x PCS

218 CHAPTER 15. FILTERS

15.146 USB 1.0 / 2.x PMA

15.147. UNDERSHOOT 219

15.147 Undershoot

220 CHAPTER 15. FILTERS

15.148 Upsample

Upsamples a waveform using sin(x)/x interpolation.

15.149. VCD IMPORT 221
15.149 VCD Import

Loads digital waveform data from a Value Change Dump (VCD) file.

222 CHAPTER 15. FILTERS

15.150 Vector Frequency

Calculates the instantaneous frequency (rotational velocity) of a complex I/Q signal.

15.151. VECTOR PHASE 223

15.151 Vector Phase

Calculates the instantaneous phase of a complex I/Q signal.

224 CHAPTER 15. FILTERS

15.152 Vertical Bathtub

15.153. VICP 225
15.153 VICP

Decodes the Teledyne LeCroy Virtual Instrument Control Protocol (VICP)

226 CHAPTER 15. FILTERS

15.154 Waterfall

15.155. WAV IMPORT 227
15.155 WAV Import

Loads waveform data from a Microsoft WAV audio file.

228 CHAPTER 15. FILTERS
15.156 WFM Import

Loads waveform data from a Tektronix .wim file.

15.157. WINDOWED AUTOCORRELATION 229

15.157 Windowed Autocorrelation

Calculates the cross-correlation between a fixed size block of the input signal and another block of

the same size.

This will produce maximal response for a signal which has periodicity with the specified period
and block size.

For example, period 4 and block size 2 will match aa**aa**,

This can be used to identify OFDM symbols.

230 CHAPTER 15. FILTERS

15.158 Window

Selects a temporal subset of an input waveform. Useful for running intensive analyses only on a
region of interest. Start and end times are rounded to the sample that starts at or nearest after the
given time.

15.158.1 Inputs

Signal name Type Description

din Analog or Digital Input waveform

15.158.2 Parameters

Parameter name Type Description
Start Time Float Start of selected window
Duration Float Length of selected window

15.158.3 Output Signal

This filter outputs a subset of the input signal. If the input is sparse, so is the output and vice
versa. No samples are added.

Chapter 16

Export Formats

16.1 CSV

Exports waveform data to a comma-separated-value file.

The first two columns of the generated file contain the X and Y values of the timebase reference
channel (the channel selected on the first page of the export wizard). Each sample in this channel
maps directly to a row in the generated CSV. Any waveform-type channel can be selected for export,
however eye patterns, spectrograms, and other 2D density plots cannot be used.

The second page of the wizard allows additional channels to be added to the export. Each
channel maps to an additional column in the generated CSV. The wizard will only allow channels
with compatible X axis units; for example if the first channe has X axis units of time then it will
not be possible to add a channel with X axis units of frequency to the same CSV.

Since the first channel serves as a timebase reference, all subsequent channels in the exported
data share the same timestamps as the first channel. If the channels are not sampled at identical
times, the following resampling algorithms are used for additional channels:

e Analog data: linear interpolation
e Digital data: nearest neighbor

e Protocol data: No interpolation. Protocol events are displayed as close as possible to their
start timestamp; remaining cells are blank.

16.2 Touchstone

Exports S-parameter data to a Touchstone 1.1 file with an arbitrary number of ports.

The exporter expects waveform data in mag/angle format. Magnitude channels must have X
axis units of Hz and Y axis units of dB; angle channels must have X axis units of Hz and Y axis units
of degrees. While input data need not be uniformly sampled, all input channels must be sampled
at the same set of frequencies.

Frequency units for the generated file can be selected as Hz, kHz, MHz, or GHz.

The export wizard allows mag/angle, dB mag/angle, or real/imaginary format to be selected.
However, as of this writing only mag/angle is actually implemented. Selecting any other format
will result in a warning on the console; the file will be generated in mag/angle format regardless of
the user’s choice.

231

232 CHAPTER 16. EXPORT FORMATS

Chapter 17

Internals

17.1 Introduction

This chapter provides a high level overview of libscopehal and glscopeclient internals. It is intended
for developers to gain an understanding of the overall project architecture and how key pieces fit
together, but is not a substitute for the low level API documentation (Doxygen).

Many of the entities described below use a dynamic discovery / registration system. This allows
all such classes to be enumerated (and associated with human-readable names), and allows for
objects of any registered type - including those provided by plugins - to be created at run time by
a factory method given the human-readable class name.

17.2 Instruments

An instrument is an instance of a class derived from Instrument, which represents an arbitrary piece
of laboratory equipment. As of this writing, an instrument may be an oscilloscope, multimeter,
power supply, baseband signal generator, or RF signal generator - or an arbitrary combination of
these (for example an oscilloscope with integrated function generator is both an oscilloscope and
baseband signal generator).

The type of an instrument is defined by a bit field and may be queried by calling GetInstrumentTypes().
Do not rely on C++ RTTI to determine the type of an instrument, for example it is incorrect to
dynamic_cast a Instrumentx pointer to Oscilloscope* to check if the instrument is an oscillo-
scope. This is because the C++ type of an object is fixed when the driver class is compiled, and
the driver may be used with many different instruments with various sets of software and hardware
options. In other words, the fact that a given driver supports some device that contains multimeter
functionality does not in any way imply that the particular device you are talking to is a multimeter.

The Instrument class provides no functionality other than describing the device (querying make/-
model/serial number, assigning display nicknames, and querying feature set). To do any useful work,
the object is normally casted to a derived type to gain access to that device class’s API.

17.3 SCPI Devices

A SCPI device is an instance of a class derived from SCPIDevice, which represents a device which
speaks some variant of SCPI. The vast majority of instrument driver classes derive from both
SCPIDevice and one or more Instrument derived classes.

233

234 CHAPTER 17. INTERNALS

A SCPI device object uses a transport to communicate with the associated instrument, which
avoids the need for the driver class to concern itself with the specifics of how the SCPI commands
are transferred to the device.

17.4 Transports

A transport is an instance of a class derived from SCPITransport, which provides a means of sending
SCPI commands and/or raw byte string data to or from a physical instrument.

Most transports use a single stream in the underlying protocol layer (such as a single TCP
socket) to transport both control plane content (SCPI commands) and data plane content (wave-
form data), however some specialized protocols have multiple physical streams (for example the
SCPITwinLanTransport transport). For these instruments, the command /reply APIs and raw data
APIs may not go to the same place.

All transports must be registered in order to be used by glscopeclient. To register a trans-
port class, add the macro TRANSPORT_INITPROC(FooTransport) to your class declaration and call
AddTransportClass(FooTransport) in either the TransportStaticInit function within libscopehal
or the PluginInit function of a plugin, as appropriate.

The special class SCPINullTransport serves as a /dev/null equivalent: it discards anything
written to it, and never returns read data. It is primarily intended to be used by the “demo" driver,
which does not connect to a real instrument.

While it is in principle possible to create a driver class that talks directly to a device via e.g.
a USB API and bypasses the transport model, this is strongly discouraged for user experience and
flexibility reasons. Most drivers for such devices (for example the Digilent and Pico drivers) instead
consist of two components: a bridge server that converts the instrument API to SCPI commands
on one socket and a raw sample data on a second socket, and a libscopehal-side driver that converts
this to the relevant instrument API.

17.5 Oscilloscopes

An Oscilloscope is an instance of a class derived from Oscilloscope, which represents a device for
acquiring sampled digital data. All actual oscilloscopes use this API, as do some other instruments
such as spectrum analyzers. Most oscilloscope driver classes derive from SCPIOscilloscope rather
than directly from Oscilloscope, as they use SCPI to communicate with the hardware.

An oscilloscope may have zero or more channels. !

At any given time, an oscilloscope has exactly one trigger associated with it. A trigger has inputs
and properties just like a filter, since both are derived from FlowGraphNode. Most triggers take at
least one input, however zero-input triggers are possible (for example, triggering on AC mains zero
crossings).

Every oscilloscope driver class must contain a public static method GetDriverNameInternal(),
which returns a std: :string containing a short, human readable name for the driver (for example
“agilent" or “pico"). By convention, the driver name should consist of lowercase letters and numbers
only - no spaces, punctuation, or capital letters.

Just like transports, every oscilloscope driver class must be registered in the dynamic cre-

LAIl currently extant implementations have at least one channel, however it is plausible that a zero-channel
instrument might exist in the future (for example, some sort of external trigger controller that exposes the same
trigger API as a conventional oscilloscope) so the API allows for this.

17.6. CHANNELS 235

ation table by invoking OSCILLOSCOPE_INITPROC(MyOscilloscope) in the class declaration and
AddDriverClass(MyOscilloscope) in DriverStaticInit or PluginInit.

17.6 Channels

A channel is an instance of a class derived from OscilloscopeChannel, which represents a single
source of data and associated controls. A channel may be associated with an oscilloscope, or it may
be a filter which is not associated with any particular physical instrument.

Channels of an oscilloscope generally map 1:1 to analog front ends. Most commonly they are
also 1:1 with instrument front panel connectors, however there are some notable exceptions. Some
high end oscilloscopes (such as the Teledyne LeCroy WaveMaster family) have multiple inputs with
a multiplexer feeding a single front end; this ensemble is considered to be a single channel by
libscopehal. Network analyzers have separate channels for receive and reflected power, for example
S11 and Si2 of a VNA are measured at the same physical port on the instrument but separate
channels in libscopehal.

A channel normally has one or more output streams, however in some less common situations
(such as dedicated trigger inputs) there may be zero streams.

Channels are reference counted: when at least one filter or waveform view is consuming the
output of a channel it will be automatically enabled. When the last user of a channel is removed,
the channel will be disabled and, if a filter, deleted.

Various properties can be configured on channels, such as gain/offset and bandwidth limiters.
Depending on whether the channel is a filter or not, or what kind of oscillocope it is connected to,
not all of these settings may be available.

17.7 Streams

A stream is an output from a channel. Most channels of physical oscilloscopes have only a single
stream, however some have multiple (for example I and Q from a realtime spectrum analyzer, or
magnitude and angle from a VNA). Many filters have multiple output streams, for example each
channel of an imported WAV file is a separate stream of the import filter.

All streams of a channel must have the same X axis unit, however they may have independent
Y axis units.

The set of streams provided by a filter may change at run time, most commonly if an import
filter is pointed to a new file. When a filter changes its set of output streams, it must emit the
m_outputsChangedSignal signal so that other code can handle the change appropriately.

17.8 Triggers

TODO: write this section

17.9 Waveforms

A waveform is a class derived from WaveformBase which stores a vector of sampled data. The
AnalogWaveform and DigitalWaveform classes store 32-bit floating point and Boolean data respec-

236 CHAPTER 17. INTERNALS

tively. Additional waveform classes are defined by many protocol decodes to store data of arbitrary
class type.

The units for X and Y axis are not specified in the waveform, but are properties of the channel
/ stream that the waveform came from. Most commonly, for analog oscilloscope waveforms, the X
axis unit is femtoseconds and the Y axis unit is volts - but other units may be encountered, for
example the output of a FFT has X axis units in Hz and Y axis in dBm.?

Waveforms store timestamp / header metadata as well as three vectors of data:

e m_offsets: start time of each sample
e m_durations: length of each sample

e m_samples: actual sample data

All three vectors must always be the same length. (The struct-of-arrays memory format allows
for better cache locality and is more SIMD-friendly than an array-of-structs format.)

Sample offsets and durations are measured in time base units (defined by m_timescale). This
is commonly the sample rate of the ADC or logic analyzer that acquired the data, however for
upsampled or interpolated data smaller time scale values - as low as 1 - may be used. A static
offset, the “trigger phase" (m_triggerPhase), measured in raw X axis units and not scaled by
m_timescale, is added to the timestamp of every signal after scaling by the time base unit. This is
commonly used to apply a sub-sample offset to a waveform for trigger interpolation or de-skewing.

The final timestamp of sample 4, in X axis units, is thus m_offsets[i]*m_timescale + m_triggerPhase.

Note that the offset /duration allows samples to have arbitrary length and spacing; i.e. waveforms
are inherently sparse. This is necessary to support protocol events, irregularly sampled data, etc.
Sample timestamps must increase monotonically: sample i+ must start at or after the end of
sample 1.

The majority of waveforms (such as those coming directly off an oscilloscope) will be uniformly
sampled, which renders the sparse storage format inefficient. A waveform of N samples which has a
duration of 1 for every sample, and offsets ranging from 0 to N-1, is considered to be “dense packed"
and should have the m_densePacked flag set to enable various processing optimizations. The dense
pack flag must NOT be set on a waveform which does not meet these criteria as this can lead to
incorrect output.

Filters presented with input marked as dense packed are free to ignore the timestamp and
duration flags at their input. Filters generating densely packed output should set the dense pack
flag, however they must still fill the timestamp and duration vectors for use by filters which do not
have an optimized special case for dense packed inputs.

17.10 Filters

TODO: write this section

17.11 Plugins

A plugin is a shared library which may contain transports, drivers, filters, and export wizards. All
of these must be registered in a function called PluginInit exported with extern "C" linkage.

2Some variables and methods throughout the project (especially in older code) use “time" or “voltage" terminology
to refer to the current X or Y axis units. This will likely be changed through refactoring over the long term.

17.11. PLUGINS

237

Plugins are automatically loaded at startup by glscopeclient, however standalone applications

using libscopehal must explicitly call InitializePlugins() to load them.

17.11.1 Linux

On Linux, plugins are loaded from the following directories:

e /usr/lib/scopehal/plugins
e /usr/local/lib/scopehal/plugins
e /.scopehal/plugins

e Executable directory, if not under /usr

17.11.2 Windows

On Windows, plugins are loaded from the following directories:

e (Executable directory) \plugins

	Introduction
	Introduction
	Revision History

	Legal Notices
	Introduction
	License Agreement
	Trademarks
	Third Party Licenses
	avx_mathfun.h (zlib license)

	Getting Started
	Documentation Conventions
	Host System Requirements
	Instrument Support
	Compilation
	Linux
	macOS
	Windows
	Installing from the package manager
	Building from source

	Running glscopeclient
	Configuration arguments
	Console verbosity arguments
	File arguments
	Instrument arguments

	Design Philosophy
	Troubleshooting
	Corrupted or no graphical output in waveform areas

	Transports
	gpib
	lan
	lxi
	null
	twinlan
	uart
	usbtmc
	vicp

	Oscilloscope Drivers
	Agilent
	agilent
	Typical Performance (MSO6034A, LAN)
	Typical Performance (MSOX3104T, LAN)

	Antikernel Labs
	akila
	aklabs

	Demo
	Digilent
	digilent
	Typical Performance (ADP3450, USB -> LAN)

	DreamSource Lab
	dslabs
	Typical DSCope Performance (DSCope U3P100, USB3, localhost)
	Typical DSLogic Performance (DSLogic U3Pro16, USB3, localhost)

	Enjoy Digital
	Hantek
	Keysight
	agilent

	Keysight DCA
	Pico Technologies
	pico
	Typical Performance (6824E, LAN)

	Rigol
	rigol
	Typical Performance (MSO5000 series, LAN)

	Rohde & Schwarz
	Saleae
	Siglent
	Typical Performance (SDS2104X+, LAN)

	Teledyne LeCroy / LeCroy
	lecroy
	Typical Performance (HDO9204, VICP)
	Typical Performance (WaveRunner 8404M-MS, VICP)

	lecroy_fwp

	Tektronix
	Note regarding ``lan" transport on MSO5/6
	Typical Performance (MSO64, LXI, embedded OS)

	Xilinx

	Power Supply Drivers
	GW Instek
	gwinstek_gpdx303s

	Rohde & Schwarz
	rs_hmc804x

	Main Window
	Menu
	File
	Setup
	View
	Add
	Window
	Help

	Toolbar
	Capture buttons
	History
	Refresh Settings
	Clear Sweeps
	Fullscreen
	Opacity slider

	Waveform Groups
	Managing Groups

	Timeline
	Triggers
	Trigger Properties
	Serial Pattern Triggers
	Dropout
	Inputs
	Parameters

	Edge
	Inputs
	Parameters

	Glitch
	Pulse Width
	Parameters

	Runt
	Parameters

	Slew Rate
	Parameters

	UART
	Inputs
	Parameters

	Window
	Parameters

	Waveform Views
	Navigation
	Plot Area
	Y Axis Scale
	Channel Information Box
	Cursors
	Vertical Cursors
	Horizontal Cursors
	Markers

	Overlays
	Statistics

	History View
	Pinning
	Labeling
	Estimating Waveform Memory Usage

	Protocol Analyzer View
	Cursor Interaction
	Packet Coloring
	Filtering
	Expressions
	Operators
	Examples of filters

	Filter Graph Editor
	Filters
	Introduction
	Key Concepts
	Conventions

	128b/130b
	64b/66b
	Inputs
	Parameters
	Output Signal

	8B/10B (IBM)
	Inputs
	Parameters
	Output Signal

	8B/10B (TMDS)
	Inputs
	Parameters
	Output Signal

	AC Couple
	Inputs
	Parameters
	Output Signal

	AC RMS
	Inputs
	Parameters
	Output Signal

	Area Under Curve
	Inputs
	Parameters
	Output Signal

	ADL5205
	Inputs
	Parameters
	Output Signal

	Autocorrelation
	Inputs
	Parameters
	Output Signal

	Base
	Inputs
	Parameters
	Output Signal

	BIN Import
	Burst Width
	Inputs
	Parameters
	Output Signal

	CAN
	Inputs
	Parameters
	Output Signal

	Channel Emulation
	Inputs
	Parameters
	Output Signal

	Clip
	Inputs
	Parameters
	Output Signal

	Clock Recovery (D-PHY HS Mode)
	Clock Recovery (PLL)
	Inputs
	Parameters
	Output Signal

	Clock Recovery (UART)
	Complex Import
	Inputs
	Parameters
	Output Signal

	CSV Export
	CSV Import
	Current Shunt
	DC Offset
	Inputs
	Parameters
	Output Signal

	DDJ
	Inputs
	Parameters
	Output Signal

	DDR1 Command Bus
	DDR3 Command Bus
	De-Embed
	Inputs
	Parameters
	Output Signal

	Deskew
	Inputs
	Parameters
	Output Signal

	Digital to NRZ
	Inputs
	Parameters
	Output Signal

	Digital to PAM4
	Inputs
	Parameters
	Output Signal

	Divide
	Downconvert
	Downsample
	DRAM Clocks
	DRAM Trcd
	DRAM Trfc
	Duty Cycle
	DVI
	Emphasis
	Emphasis Removal
	Enhanced Resolution
	Inputs
	Parameters

	Envelope
	Ethernet - 10baseT
	Ethernet - 100baseTX
	Ethernet - 1000baseX
	Parameters
	Output Signal

	Ethernet - GMII
	Ethernet - QSGMII
	Ethernet - RGMII
	Ethernet - RMII
	Ethernet - SGMII
	Ethernet Autonegotiation
	Ethernet Autonegotiation Page
	Ethernet Base-X Autonegotiation
	Eye Bit Rate
	Eye Height
	Eye P-P Jitter
	Eye Pattern
	Eye Period
	Eye Width
	Fall
	FFT
	FIR
	Frequency
	FSK
	Group Delay
	Inputs
	Parameters
	Output Signal

	Histogram
	Inputs
	Parameters
	Output Signal

	Horizontal Bathtub
	HDMI
	I2C
	I2C EEPROM
	I2C Register
	IBIS Driver
	Inputs
	Parameters
	Output Signal

	Invert
	Intel eSPI
	IPv4
	IQ Squelch
	Jitter
	Inputs
	Parameters
	Output Signal

	Jitter Spectrum
	JTAG
	Magnitude
	MDIO
	Memory
	MIL-STD-1553
	MIPI D-Phy Data
	MIPI D-Phy Escape Mode
	MIPI D-Phy Symbol
	MIPI DSI Frame
	MIPI DSI Packet
	Moving Average
	Multiply
	Noise
	OFDM Demodulator
	Overshoot
	PAM4 Demodulator
	Parallel Bus
	PCIe Data Link
	PCIe Gen 1/2 Logical
	PCIe Gen 3/4/5 Logical
	PCIe Link Training
	PCIe Transport
	Peak Hold
	Peak-to-Peak
	Period
	Phase
	Phase Nonlinearity
	Inputs
	Parameters
	Output Signal

	PRBS
	Pulse Width
	Inputs
	Output Signal

	Reference Plane Extension
	Rj + BUj
	QSPI
	Quadrature
	Rise
	S-Parameter Cascade
	S-Parameter De-Embed
	Scale
	SD Card Command
	Sine
	Spectrogram
	SPI
	SPI Flash
	Squelch
	Step
	Subtract
	Inputs
	Parameters
	Output Signal

	SWD
	Inputs
	Parameters
	Output Signal

	SWD MEM-AP
	Tachometer
	Tapped Delay Line
	TCP
	TDR
	TDR Step De-Embed
	Time Outside Level
	Inputs
	Parameters

	Thermal Diode
	Threshold
	Inputs
	Parameters
	Output Signal

	TIE
	Top
	Inputs
	Parameters
	Output Signal

	Touchstone Export
	Touchstone Import
	Trend
	TRC Import
	UART
	Unwrapped Phase
	Inputs
	Parameters
	Output Signal

	USB 1.0 / 2.x Activity
	USB 1.0 / 2.x Packet
	USB 1.0 / 2.x PCS
	USB 1.0 / 2.x PMA
	Undershoot
	Upsample
	VCD Import
	Vector Frequency
	Vector Phase
	Vertical Bathtub
	VICP
	Waterfall
	WAV Import
	WFM Import
	Windowed Autocorrelation
	Window
	Inputs
	Parameters
	Output Signal

	Export Formats
	CSV
	Touchstone

	Internals
	Introduction
	Instruments
	SCPI Devices
	Transports
	Oscilloscopes
	Channels
	Streams
	Triggers
	Waveforms
	Filters
	Plugins
	Linux
	Windows

