Distributed Hash Cracker: A Cross-Platform GPU-Accelerated
Password Recovery System

Andrew Zonenberg
Rensselaer Polytechnic Institute
110 8th Street
Troy, New York U.S.A. 12180
zonena@cs.rpi.edu

April 28, 2009

Abstract

Recovery of passwords protected by one-way hashes is
a problem ideally suited to parallel computing, due to the
embarrassingly parallel nature of a brute force attack. Al-
though many computer forensics and penetration testing
tools can perform multithreaded hash cracking on SMP
systems, modern iterated-hash techniques require unac-
ceptably long crack time on a single computer. The author
is aware of only one system capable of brute-force hash
cracking across multiple computers, an expensive com-
mercial product which only runs on Windows and does
not permit the user to extend it to support new algorithms.

This paper presents a distributed hash cracking system
capable of running on all major platforms, using nVidia
GPU acceleration where available. The cracker is mod-
ular and allows precompiled hash algorithms or “crack
threads” (guess generation and test logic) to be added with
no modification to the existing application binaries, in or-
der to add support for new algorithms or make use of hard-
ware acceleration. Linear scaling is demonstrated up to 64
processor cores. Performance testing was also conducted
on larger clusters but due to their non-homogeneous na-
ture it was not possible to achieve meaningful scaling re-
sults.

1 Introduction

In many situations (such as forensic analysis, data re-
covery, or penetration testing) it is necessary to recover
the plaintext of a password encrypted with a crypto-
graphic one-way hash: a function mapping arbitrary sized
inputs to fixed sized outputs in such a way that the map-
ping cannot be easily reversed. One of the distingushing
characteristics of a cryptographic hash, as opposed to a
non-cryptographic hash function (e.g. CRC-32) is that it
is designed to exhibit a strong avalanche effect (a single-
bit change to the input will change, on average, a random
half of the output bits).

Some hash algorithms, such as MDS5, have been dis-
covered to exhibit collision weaknesses [1] : it is possible
to generate two messages which hash to the same value.
This is generally an easier problem than the so-called
“first preimage” attack, where an input value is calculated
which hashes to a provided value. For the purposes of this
project it was assumed that the target hash algorithm does
not have a known first preimage attack and the only way
to recover a plaintext password is a brute-force attack. [2]
is an example of a typical program designed for recov-
ering hashed passwords by brute force, which is capable
of exploiting multicore parallelism in SMP systems but
cannot run on more than one system at a time.

A password can be thought of as n symbols picked
(with repetition allowed) from a c-symbol “character set”.

Simple mathematics shows that there are n possible pass-
(&

words. On average, half - % - will need to be tried. In-

creasing either n or ¢ will raise the number of combina-
tions exponentially, as shown below:
C

n
c|n 5

26 | 6 154,457,888

26 | 7 4,015,905,088

52| 6 9,885,304,832

26 | 8 104,413,532,288

52 |7 514,035,851,264

52 | 8 | 26,729,864,265,728

62 | 8 | 109,170,052,792,448

Precomputation attacks, such as rainbow tables [3] are
feasible against some hashing algorithms. Many applica-
tions, such as Unix-like operating systems, use “salted”
hashes: a randomly generated value, which need not be
kept secret, is combined with the password during hash-
ing to increase the amount of time and storage needed for
table generation. A well-designed salting algorithm can
leave a brute-force attack as the only viable means of re-
covering a password.

Even at a 40 million hashes per second - possible for
MDS5 on a moderately fast multicore system using [2] -
performing a brute force attack on a decent password is
extremely time consuming. For a typical password of 8
characters drawn from the set a-zA-Z0-9, we have ¢ = 62
and n = 8. This would take an average of 2,729,251
seconds, or just over a month, to break on a single com-
puter. Some systems, such as Linux/FreeBSD MD5crypt
or GPG file encryption, perform multiple iterations of the
hash function (typically > 1000) to slow down brute force
attacks - potentially increasing the crack time for our hy-
pothetical password to over 83 years!

Luckily, this problem can be easily parallelized by par-
titioning the search space between multiple systems. In
theory, linear scaling can be realized due to the complete
lack of dependencies between blocks of search space: 31
equivalent computers would be able to break our MDS5 in
only a day, and by adding more systems (or making use

of GPU acceleration) crack time could potentially be re-
duced to several hours.

2 Related work

Several studies, most notably [4, 5], have examined
the feasibility of parallel hash crackers, but nearly ev-
ery system was a “classic HPC” application built using
the Message Passing Interface (MPI). These systems typ-
ically used a static set of CPU-based compute nodes con-
nected in a homogeneous cluster, lacking GPU accelera-
tion or the ability to recover from serious errors (such as
a single compute node crashing).

[6] is a TCP/IP based parallel hash cracker capable of
GPU acceleration, however it is a closed source commer-
cial product which cannot be studied at the source code
level, does not support addition of new hash algorithms or
salting algorithms, and only runs on the Windows oper-
ating system. The author was unable to locate any cross-
platform parallel hash crackers capable of utilizing GPU
acceleration.

3 System Architecture

3.1 Overview

Our distributed cracker uses a relatively standard
master-slave design: a central master server, responsi-
ble for coordinating the overall crack effort, and one or
more compute nodes, which perform the actual crack-
ing. TCP sockets are used for communication between
compute nodes and the master. As of this writing MD5
was the only hash algorithm fully implemented. MDS5-
based shadow hashes and SHA-1 are in progress, and
LM/NTLM are planned for the near future.

The cracker is being developed as an open-source ap-
plication (BSD licensed) by RPISEC, the computer secu-
rity club at Rensselaer Polytechnic Institute. Interested
parties may download source at http://rpisec.net.

3.2 Master server

The master server (written in C++) serves two func-
tions: it provides the user interface from which a crack is
actually launched, and schedules units of search space to
each compute node for processing.

During initialization, the master server spawns a net-
working thread, which hosts a socket server for commu-
nicating with compute nodes, and then goes into an input
loop, waiting for the user to type a command. Mean-
while, whenever a compute node connects, a separate
thread is spawned to service it. At any time, the user may
type an informational command (such as “stats”, which
prints out the number of connected compute nodes and,
if a crack is in progress, the portion of the search space
covered so far), a configuration command (such as “set
charset aA”, which selects the case-sensitive alphabetic
character set), or a crack command (such as “’crack md5
900150983cd24fb0d6963f7d28e17f727).

Once a “crack” command has been issued the master
enters a loop, allocating a work unit to each compute node
in a round-robin fashion until all work has been allocated,
blocking if no nodes are available. The master keeps track
of the work unit each compute node is allocated; if the
TCP connection to a compute node is dropped its WU is
returned to the pool and given to the next available node.
New compute nodes may join a master server at any time;
if a crack is in progress the new node will be given the
next available work unit.

If all work units are completed with no success reports,
the crack is declared to have failed (not in the specified
search space). On the other hand, if a node reports suc-
cess the master will display the cracked hash and return to
the idle state. Work units in progress on other nodes are
allowed to complete: to speed processing and simplify the
system design a work unit cannot be aborted over the net-
work once started.

3.3 Compute node
3.3.1 Overview

The compute node (written in C++) is responsible for
performing the actual work of a crack. When started, it
connects to the master server and announces its capabil-
ities. It then searches the current directory to find DLL
or SO files containing hash algorithms or crack threads,
loading and initializing any that are found.

When a work unit is received, the compute node parses
it and spawns a crack thread for each computing device
(processor core or CUDA GPU) in the system. Each crack
thread is assigned an equal fraction of the work unit in the
current release; future versions will benchmark each de-
vice and determine the optimal division of labor. (The
current version does not support mixed CPU and GPU
cracking, precisely for this reason.)

3.3.2 CPU implementation

The CPU crack thread consists of a loop over the search
space, generating a set (1 or 4, depending on the hash
in use) of candidate values, hashing them, and then test-
ing the results. In the current version, hashing is a sep-
arate function stored in a DLL/SO (to support pluggable
hashes) and invoked from the generation and test code in
the crack thread. We are considering merging the genera-
tion and test code into the a single monolithic ’crack unit”
to eliminate function call overhead, as was done with the
CUDA version.

3.3.3 CUDA implementation

The CUDA crack thread divides the search space into
blocks which are small enough to be processed in a few
hundred milliseconds or less. The best thread count for
this algorithm on this hardware is then looked up from a
cache file (if the value is not found, a benchmark is con-
ducted to calculate it) and a kernel is launched to process
the block. The kernel performs guess generation, hashing,
and testing in a single unit to reduce memory bandwidth
and avoid the overhead of kernel switching, at the cost of
additional code space due to repeated generation and test
logic.

Earlier versions of the CUDA design used a pipelined
design similar to the PS3 - a kernel which generated a
block of guesses and saved them to GPU memory, fol-
lowed by a kernel which hashed the block, followed by
another which tested the results. When this design was
discovered to be memory-bound, the design was switched
to the current monolithic kernel. This resulted in a sub-
stantial performance increase.

3.3.4 PS3 implementation

The Cell crack thread was designed for the PS3, and
thus uses only six of the eight SPEs on the processor.
The current design consists of two parallel pipelines (each
handled by a separate PPE thread) of three SPEs each.

The first step of the pipeline generates a set of candidate
values, then sends them to the second via DMA transfer
and begins producing the next block as soon as the DMA
has finished. The second stage hashes the inputs and then
DMAs them to the third for testing in the same manner.
The test stage then compares the data against the target
hash and reports success if found.

While this architecture works - and can crack 20 mil-
lion MDS35s per second on a PS3 - it appears to be getting
memory bound. Borrowing an idea from the CUDA im-
plementation, we plan to switch to a monolithic “crack
block” containing repeated generation and test code for
each hash, in order to permit all data of interest to be kept
in registers rather than being moved to local storage.

3.4 Network protocol

In order to ease debugging and avoid endianness issues,
it was decided to use a simple text-based protocol loosely
modeled on HTTP. Strings are transmitted in a modified
Pascal format: the length in bytes as ASCII decimal, fol-
lowed by a space, then the string.

A work unit consists of a method (always “crack” in
the current version), followed by the target and a newline
character. Additional data (such as character set or guess
ranges) is communicated with “headers” in HTTP format:
the name of the header, a colon, a space, and the value.
Example work unit:

CRACK 32 a920d3b22d35e528e4b52a244cc00328
Algorithm: 3 mdb

Charset: 26 abcdefghijklmnopgrstuvwxyz
Start-Guess: 3 aaa

End-Guess: 3 zzz

Once a work unit is completed, regardless of success,
the compute node contacts the master to indicate the cur-
rent situation. Valid responses are ‘“continue” (search
space covered, target not found, ready for next work unit),
“leaving” (search space covered, target not found, com-
pute node is terminating), and “found” (target hash was
cracked, cracked value is on the next line of the response).

4 Performance Results

4.1 Scaling

A scaling test was conducted on a cluster of 2.0 GHz
Opteron systems running Linux. The cracker scaled very
well up to the limits of the test (64 processors), slowing
down slightly at 8 nodes and then achieving barely super-
linear speedups for the rest of the runs. These anomalies
appear to be due to measurement error.

CPUs | Speed (x1M hash/sec) | Speedup
4 15.88 1
8 30.35 1.91
16 67.35 4.24
32 128.79 8.11
64 254.29 16.01
16 T T T T T T
14 - i
12 .
a 10} .
ki
2 8FfF 1
7]
6 - -
4 4
2| i
10 20 30 40 50 60
Nodes

4.2 GPU vs CPU performance

No formal scalability testing has been conducted on
GPUs as of this writing, because the author was unable
to obtain a large number of identical cards for testing on.
Early performance results are promising, however, and
suggest that a few of GPUs will be able to outperform
a moderately sized CPU-based cluster.

System Speed (xIM hash/sec)
P4 2.0 GHz 3.24
Core 2 Duo 2.2 GHz 16.19
GeForce 8600M GT 24.42
2x quad Xeon 2.0 GHz 55.33
Quadro FX 4600 102.26
GeForce GTX 260* 250

* tested on earlier version of code

4.3 Throughput tests

The highest throughput reached as of this writing was
1.88 billion MD5s/sec during a ten-minute test on the fol-
lowing systems:

e 47 Dual Xeon 2.8Ghz (Dual Core)
e 14 Dual Xeon 2.8Ghz (Quad Core)
e 29 Pentium D 2.8 (Dual Core)

e 15 AMD X2 5000+

This is substantially less that the theoretical capabilities of
the cracker on this hardware, however this test was con-
ducted by a third party and the exact parameters of the test
are unknown. It is believed that these systems were in use
by other applications during this test, making its validity
as a scaling measurement questionable. However, as a
demonstration of what a distributed cracker can do given
adequate hardware, it appears to have served its purpose.
(An MDS5 of a ”standard good password” - 8 characters,
case sensitive alphanumeric - could be cracked in an av-
erage of 16 hours on this system. Eight characters single-
case alphanumeric would last a mere 12 minutes.)

5 Conclusions

The use of a distributed brute-force attack for recover-
ing hashed passwords appears very feasible for any pass-
word of < 8 characters length using common character
sets (i.e. alphanumeric case sensitive). For only a few
tens of thousands of dollars, one can build a cluster ca-
pable of breaking most common passwords (assuming a
non-iterated hash) in hours. It is likely that a large en-
terprise (e.g. data recovery service) with a multi-million
dollar budget could scale such a system up to several thou-
sand multi-GPU nodes and break a typical password in
minutes.

Iterated hashes, such as the md5-based crypt() used in
current Linux and BSD operating systems, will substan-
tially slow down attacks, but do so by a linear factor. Al-
though we have not yet performed large-scale testing of
MD5crypt (due to the lack of CUDA or optimized x86
implementations), we have no reason to expect its perfor-
mance to differ from that of unsalted MDS5 by more than
a linear factor.

6 Future work

CUDA is not the only general-purpose GPU computing
platform around. Due to time limitations it was not pos-
sible to explore ATI Stream Processing and similar plat-
forms.

In order to be useful for penetration testing or commer-
cial password recovery, the cracker will need to support
most popular hash algorithms. The current version does
not support some (i.e. NTLM) at all, and others are only
partially implemented (MDS5crypt does not have CUDA,
Cell, or x86 assembly implementations). We plan to con-
tinue working on these in the near future.

The current system maintains a socket and thread for
each connected compute node. At node counts in the
thousands or higher, file handle limitations will begin to
cause problems. We are currently exploring stateless pro-
tocols which should permit much better scaling to extreme
node counts.

Our Cell code has significant room for improvement, as
this was a relatively recent addition to the project. Rates
of up to 80 million MDS5 hashes per second have been
cited on a PlayStation 3, while our code only reaches a
quarter of that.

7 Acknowledgements

The author would like to thank Dr. Chris Carothers,
Rob Escriva, Ryan Govostes, Alex Radocea, and the
members of RPISEC for technical advice, code contribu-
tions, and computer time. Compatibility and performance
testing would not have been possible without donations
of processing time from Ryan MacDonald, Louis Peryea,
Andrew Tamoney, Jeff van Vranken, and Chris Wendling.

References

[1] Sotirov et al, “MD5 considered harmful to-
day: Creating a rogue CA certificate” [On-
line document] [Cited 2009 Apr 20], Avail-
able HTTP: http://www.win.tue.nl/hashclash/rogue-
ca/downloads/md5-collisions-1.0.pdf

[2] “MDCrack, bruteforce your MD2 / MD4 / MDS5 /
HMAC / NTLM1 / I0S / PIX / FreeBSD Hashes”
[Online document] [Cited 2009 Apr 9], Available
HTTP: http://membres.lycos.fr/mdcrack/

[3] Oechslin, P. “Making a Faster Cryptanalytic Time-
Memory Trade-Off”, 2003

[4] Bengtsson, J. “Parallel Password Cracker: A Fea-
sibility Study of Using Linux Clustering Technique
in Computer Forensics”, Digital Forensics and Inci-
dent Analysis, 2007.

[5] Lim, R. “Parallelization of John the Rip-
per (JtR) using MPI” [Online document]
[Cited 2009 Apr 9], Available HTTP:
http://www.ryanlim.com/personal/jtr-mpi/report.pdf

[6] “Elcomsoft Distributed Password Recovery” [On-
line document] [Cited 2009 Apr 9], Available
HTTP: http://www.elcomsoft.com/edpr.html

